Skip to main content

Genetic Enhancement of Groundnut: Current Status and Future Prospects

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 4

Abstract

About 94% of the world groundnut (Arachis hypogaea L.) production comes from the rainfed crop grown largely by resource-poor farmers. Several biotic and abiotic stresses limit groundnut productivity, together causing annual yield losses of over US $ 3.2 billion, and probably half of this could be recovered through genetic enhancement in groundnut. Cultivated species and the wild Arachis species do carry novel genes which could be employed for improvement of both seed yield and quality in addition to imparting resistance to diseases and insect pests. Many of the wild Arachis species are not cross compatible with the cultivated groundnut. However, the efforts to overcome incompatibility in wide crosses have been successful in transferring the novel genes through interspecific progenies. The conventional breeding procedures employ hybridization and phenotype-based selection followed by selection of promising breeding lines through yield evaluation trials. In the past, these were achieved mainly through mass selection and pure-line selections; subsequently backcross and pedigree approaches were largely employed followed by inter- and intra-specific hybridization. Simultaneously, the induced mutagenesis played a significant role in the development of multiple stress-tolerant high-yielding varieties. However, these methods of genetic enhancement suffer from linkage drag and hybridization barrier apart from difficulty in delimiting the genomic regions to be transferred. The recent developments in biotechnology (genetic engineering and marker-assisted breeding) have immense potential for improving the efficiency and precision of genetic enhancement in groundnut. Overall progress made so far with respect to genetic enhancement of groundnut for productivity, tolerance to biotic and abiotic stresses, quality, etc. through various methods have been reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal G, Clevenger J, Pandey MK, Wang H, Shasidhar Y, Chu Y, Fountain JC, Choudhary D, Culbreath AK, Liu X (2018) High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J 16(11):1954–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal G, Clevenger J, Kale SM, Wang H, Pandey MK, Choudhary D, Yuan M, Wang X, Culbreath AK, Holbrook CC (2019) A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea). Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Arias RS, Dang PM, Sobolev VS (2015) RNAi-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut/Aspergillus pathosystem. J Vis Exp 106

    Google Scholar 

  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, Arif A, Nazir F (2011) Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol 49(3):250–256

    Article  CAS  PubMed  Google Scholar 

  • Badigannavar AM, Murthy GSS, Kale DM (2007) Evolution of Trombay groundnut varieties through mutation and recombination breeding. Plant Mutat Rep 1(3):46–51

    Google Scholar 

  • Ballén Taborda C, Chu Y, Ozias-Akins P, Timper P, Jackson SA, Bertioli DJ, Leal Bertioli SC (2019) Validation of resistance to root knot nematode incorporated in peanut from the wild relative Arachis stenosperma. Sci Rep 9:17702. https://doi.org/10.1038/s41598-019-54183-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Do Kim K, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli SCM, Ren L, Farmer AD, Pandey MK, Samoluk SS, Abernathy B, Agarwal G, Ballen-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim KD, Korani W, Lanciano S, Lui CG, Mirouze M, Moretzsohn MC, Pham M, Shin JH, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks NT, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden EL, Michelmore R, Varshney RK, Holbrook CC, Cannon EKS, Scheffler BE, Grimwood J, Ozias-Akins P, Cannon SB, Jackson SA, Schmutz J (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51(5):877–884

    Article  CAS  PubMed  Google Scholar 

  • Bhalani H, Thankappan R, Mishra GP, Sarkar T, Bosamia TC, Dobaria JR (2019) Regulation of antioxidant mechanisms by AtDREB1A improves soil-moisture deficit stress tolerance in transgenic peanut (Arachis hypogaea L.). PloS one 14(5):e0216706

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat RS, Shirasawa K, Sharma V, Isobe S, Hirakawa H, Kuwata C, Pandey MK, Varshney RK, Gowda MVC (2021a) Population genomics of peanut. In: Rajora OP (ed) Population genomics of crop plants. Springer, Cham

    Google Scholar 

  • Bhat RS, Venkatesh, Jadhav MP, Patil PV, Shirasawa K (2021b) Genomics-assisted breeding for resistance to leaf spots and rust diseases in peanut. In: Gosal SS, Wani SH (eds) Accelerated plant breeding, volume 4: oil crops. Springer, Cham, p 15

    Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Brasileiro AC, Morgante CV, Araujo AC, Leal-Bertioli SC, Silva AK, Martins AC, Vinson CC, Santos CM, Bonfim O, Togawa RC (2015) Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep 33(6):1876–1892

    Article  CAS  Google Scholar 

  • Chauhan JS, Rajendra Prasad R, Pal S, Choudhury PR, Bhaskar KU (2016) Seed production of field crops in India: Quality assurance, status, impact and way forward. Indian J Agric Sci 86(5):563–579

    CAS  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan AW, Zhu F, Zhang X, Pan L, Pierce GJ, Zhou G, Krishnamohan KA, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang GQ, Sharma S, Chen N, Liu H, Janila P, Wang M, Wang T, Sun J, Li X, Li C, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Liu ZJ, Paterson AH, Wang S, Liang X, Varshney RK, Yu S (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci 113(24):6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey MK, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique KHM, Liu ZJ, Paterson AH, Varshney RK, Liang X (2019) Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12(7):920–934

    Article  CAS  PubMed  Google Scholar 

  • Clevenger J, Chu Y, Scheffler B, Ozias-Akins P (2016) A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci 7:1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffelt TA, Seaton ML, VanScoyoc SW (1989) Reproductive efficiency of 14 Virginia-type peanut cultivars. Crop Sci 29:1217–1220

    Article  Google Scholar 

  • Denwar NN, Simpson CE, Starr JL, Wheeler TA, Burow MD (2021) Evaluation and selection of interspecific lines of groundnut (Arachis hypogaea L.) for resistance to leaf spot disease and for yield improvement. Plants 10:873. (p1-22)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H, Zhang ZM, Qin FF, Dai LX, Li CJ, Ci DW, Song WW (2014) Isolation and characterization of drought-responsive genes from peanut roots by suppression subtractive hybridization. Electron J Biotechnol 17(6):304–310

    Article  Google Scholar 

  • Dodia SM, Joshi B, Gangurde SS, Thirumalaisamy PP, Mishra GP, Narandrakumar D, Soni P, Rathnakumar AL, Dobaria JR, Sangh C (2019) Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Theor Appl Genet 132(4):1001–1016

    Article  PubMed  Google Scholar 

  • Duncan WG, McCloud DE, McGraw RL, Boote KJ (1978) Physiological aspects of peanut yield improvement. Crop Sci 18:1015–1020

    Article  Google Scholar 

  • Dwivedi SL, Crouch JH, Nigam SN, Ferguson ME, Paterson AH (2003) Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. Adv Agron 80:153–221

    Article  CAS  Google Scholar 

  • Dwivedi SL, Bertioli DJ, Crouch JH, Valls JFM, Upadhyaya HD, Favero A et al (2007) Peanut. In: Kole C (ed) Genome mapping and molecular breeding in plants, Vol. 2. Oilseeds. Springer, Berlin/Heidelberg, pp 115–151

    Google Scholar 

  • FAOSTAT (2019). http://www.fao.org/faostat/en/#data/QC

  • Gantait S, Mondal S (2018) Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors. J Genet Eng Biotechnol 16(2):537–544

    Article  PubMed  PubMed Central  Google Scholar 

  • Gantait S, Panigrahi J, Patel IC, Labrooy C, Rathnakumar AL, Yasin JK (2019) Peanut (Arachis hypogaea L.) breeding. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: nut and beverage crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23112-5_8

    Chapter  Google Scholar 

  • Gautami B, Pandey MK, Vadez V, Nigam SN, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda MVC, Narasu ML, Hoisington DA, Knapp SJ, Varshney RK (2012) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:757–772

    Article  CAS  PubMed  Google Scholar 

  • Govind G, ThammeGowda HV, Kalaiarasi PJ, Iyer DR, Muthappa SK, Nese S, Makarla UK (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 281(6):591–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowda MVC, Motagi BN, Naidu GK, Diddimani SB, Sheshagiri R (2002) GPBD 4: A Spanish bunch groundnut genotype resistant to rust and late leaf spot. Int Arachis Newsl 22:29–32

    Google Scholar 

  • Guimarães PM, Brasileiro AC, Morgante CV, Martins AC, Pappas G, Silva OB, Togawa R, Leal-Bertioli SC, Araujo AC, Moretzsohn MC (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics 13:1–15

    Article  Google Scholar 

  • Hammons RO (1970) Registration of spancross peanuts (Reg.No.3). Crop Sci 10:459–460

    Google Scholar 

  • He Y, Mu S, He Z, Wang B, Li Y (2020) Ectopic expression of MYB repressor GmMYB3a improves drought tolerance and productivity of transgenic peanuts (Arachis hypogaea L.) under conditions of water deficit. Transgenic Res 29(5–6):563–574

    Article  PubMed  Google Scholar 

  • Herselman L, Thwaites R, Kimmins F, Courtois B, Van der Merwe P, Seal S (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109(7):1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754. https://doi.org/10.1038/s41587-019-0152-9

    Article  CAS  PubMed  Google Scholar 

  • ICRISAT (1994) Medium Term Plan. 1994-1998, volume 1, Patancheru, India

    Google Scholar 

  • ICRISAT (2001) P5 (Biotechnology) Project Annual Report, p 43, Patancheru, India

    Google Scholar 

  • Isleib TG, Wynne JC (1992) Use of plant introductions in peanut improvement. CSSA special publication # 20. In: (Sands HL, Sands LE, Baenziger PS, Mickelson SH (eds) Uses of plant introductions in cultivar development part 2, Medison, USA, pp 75–116

    Google Scholar 

  • Isleib TG, Wynne JC, Nigam SN (1994) Groundnut breeding. In: Smart J (ed) The groundnut crop: a scientific basis for improvement. Chapman and Hall, London, pp 552–623

    Chapter  Google Scholar 

  • Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK (2013) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23. https://doi.org/10.3389/fpls.2013.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janila P, Variath MT, Pandey MK, Desmae H, Motagi BN, Okori P, Manohar SS, Rathnakumar AL, Radhakrishnan T, Liao B, Varshney RK (2016) Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci 7:289. https://doi.org/10.3389/fpls.2016.00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthik S, Pavan G, Sathish S, Siva R, Kumar PS, Manickavasagam M (2018) Genotype-independent and enhanced in planta Agrobacterium tumefaciens-mediated genetic transformation of peanut [Arachis hypogaea (L.)]. 3 Biotech 8(4):202

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolekar RM, Sukruth M, Shirasawa K, Nadaf HL, Motagi BN, Lingaraju S, Patil PV, Bhat RS (2017) Marker-assisted backcrossing to develop foliar disease-resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed 136:948–953

    Article  CAS  Google Scholar 

  • Krishna G, Singh BK, Kim EK, Morya VK, Ramteke PW (2015) Progress in genetic engineering of peanut (Arachis hypogaea L.) – a review. Plant Biotechnol J 13(2):147–162

    Article  CAS  PubMed  Google Scholar 

  • Levinson C, Chu Y, Luo X, Stalker HT, Gao D, Holbrook CC, Ozias-Akins P (2021) Morphological and reproductive characterization of nascent allotetraploids cross-compatible with cultivated peanut (Arachis hypogaea L.). Genet Resour Crop Evol:1–14

    Google Scholar 

  • Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H (2018) Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Front Plant Sci 9

    Google Scholar 

  • Luo H, Pandey MK, Khan AW, Wu B, Guo J, Ren X, Zhou X, Chen Y, Chen W, Huang L (2019) Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnol J 17(12):2356–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss JP, Singh AK, Nigam SN, Hildebrand GL, Govinden N, Ismael FM, Subrahmanyam P, Reddy LJ (1998) Registration of ICGV-SM 86715 peanut germplasm. Crop Sci 38:572

    Article  Google Scholar 

  • Mozingo RW, Cofifelt TA, Wynne JC (1987) Genetic improvement in large-seeded Virginia-type peanut cultivars since 1944. Crop Sci 27:228–231

    Article  Google Scholar 

  • Naidu GK, Pattanashetti SK, Boodi IH, Singh OK, Prakyath Kumar K, Biradar BD, Wali MC (2017) Genetic analysis of recombinant inbred lines for iron deficiency chlorosis and productivity traits in groundnut. Indian J Genet Plant Breed 77:414–421

    Article  CAS  Google Scholar 

  • Nigam SN, Rao RN, Wynne JC (1994) Effect of temperature and photoperiod on vegetative and reproductive growth of groundnut (Arachis hypogaea L.). J Agron Crop Sci 181:117–124

    Article  Google Scholar 

  • Nigam SN, Hildebrand GL, Syamasonta B, Bock KR, Subrahmanyam P, Reddy LJ (1998a) Registration of ICGV-SM 83005 peanut germplasm. Crop Sci 38:571

    Article  Google Scholar 

  • Nigam SN, Hildebrand GL, Bock KR, Ismael FM, Govinden N, Subrahmanyam P, Reddy LJ (1998b) Registration of ICGV-SM 85048 peanut germplasm. Crop Sci 38:572–573

    Article  Google Scholar 

  • O’Connor D (2012) Development of rust tolerant peanut genotypes using a single seed descent breeding strategy and speed breeding technologies. School of Agriculture and Food Sciences, The University of Qld. St Lucia, pp 1–61

    Google Scholar 

  • O’connor D, Wright G, Dieters M, George D, Hunter M, Tatnell J, Fleischfresser D (2013) Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Sci 40(2):107–114

    Article  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, Cook DR, Bertioli DJ, Michelmore R, Varshney RK (2012) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Article  CAS  PubMed  Google Scholar 

  • Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Sharma S, Hamidou F, Anil Kumar V, Khera P, Bhat RS, Khan AW, Singh S, Li H, Monyo E, Nadaf HL, Mukri G, Jackson SA, Guo B, Liang X, Varshney RK (2014) Genome-wide association studies for 50 agronomic traits in groundnut using the reference set comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 9(8):e105228

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Roorkiwal M, Singh V, Lingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future perspectives. Front Plant Sci 7:455

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Chaudhari S, Jarquin D, Janila P, Crossa P, Sudam C, Patil SC, Subramaniam Sundravadana S, Khare D, Bhat RS, Radhakrishnan T, Hickey JM, Varshney RK (2020a) Genome-based trait prediction in multi- environment breeding trials in groundnut. Theor Appl Genet 133:3101–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Pandey AK, Kumar R, Nwosu V, Guo B, Wright G, Bhat RS, Chen X, Bera SK, Yuan M, Jiang H, Faye I, Radhakrishnan T, Wang X, Liang X, Liao B, Zhang X, Varshney RK, Zhuang W (2020b) Translational genomics for achieving higher genetic gains in groundnut. Theor Appl Genet 133:1679–1702

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Gangurde SS, Sharma V, Pattanashetti SK, Naidu GK, Faye I, Hamidou F, Desmae H, Kane NA, Yuan M, Vadez V, Nigam SN, Varshney RK (2021) Improved genetic map identified major QTLs for drought tolerance and iron deficiency tolerance related traits in groundnut. Genes 12:37

    Article  CAS  Google Scholar 

  • Patel KG, Thankappan R, Mishra GP, Mandaliya VB, Kumar A, Dobaria JR (2017) Transgenic peanut (Arachis hypogaea L.) overexpressing mtlD gene showed improved photosynthetic, physio-biochemical, and yield-parameters under soil-moisture deficit stress in lysimeter system. Front Plant Sci 8:1881

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil M, Ramu S, Jathish P, Sreevathsa R, Reddy PC, Prasad T, Udayakumar M (2014) Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnol Rep 8(2):161–169

    Article  Google Scholar 

  • Power IL, Faustinelli PC, Orner VA, Sobolev VS, Arias RS (2020) Analysis of small RNA populations generated in peanut leaves after exogenous application of dsRNA and dsDNA targeting aflatoxin synthesis genes. Sci Rep 10(1):13820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One 9(12):e111152

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan X, Shan L, Bi Y (2007) Cloning of metallothionein genes from Arachis hypogaea and characterization of AhMT2a. Rus J Plant Physiol 54(5):669–675

    Article  CAS  Google Scholar 

  • Rajendra PS, Chauhan JS, Sripathy KV (2017) An overview of national and international seed quality assurance systems and strategies for energizing seed production chain of field crops in India. Indian J Agric Sci 87(3):287–300

    Google Scholar 

  • Rathanakumar A.L., Ranvir Singh, Parmar D.L., Misra J.B. (2013). Groundnut: a crop profile and compendium of varieties notified in India. Directorate of Groundnut Research, PB No. 5, Junagadh,-362 001, Gujaray, India, 118p

    Google Scholar 

  • Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MV, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Reddy LJ, Nigam SN, Singh AK, Moss JP, Subrahmanyam P, McDonald D, Reddy AGS (1996) Registration of ICGV 86699 peanut germplasm line with multiple disease and insect resistance. Crop Sci 36:821

    Article  Google Scholar 

  • Shasidhar Y, Murali TV, Vishwakarma MK, Manohara SS, Gangurde SS, Sriswathi M, Sudini H, Dobariya KL, Bera SK, Radhakrishan T, . Pandey MK, Janila P, Varshney RK (2020) Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker assisted backcrossing. Crop J 8:1–15

    Article  Google Scholar 

  • Shu H, Luo Z, Peng Z, Wang J (2020) The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biol 20(1):1–15

    Article  Google Scholar 

  • Shuren G, Caibin W, Shanlin Y, Jimin Z, Xueqing Z, Shubo W, Shouxiang T, Chuantang W, Ruorui Q (1996) Present situation and prospects for groundnut production in China. In: Gowda CLL, Nigam SN, Johansen C, Renard C (eds) Achieving high groundnut yields: proceedings of the international workshop. Laixi City, Shandong, China, pp 17–26 (In English. Summaries in English and Chinese) and ICRISAT, Patancheru, India

    Google Scholar 

  • Simpson CE, Smith OD (1975) Registration of Tamnut 74 peanut (Reg. No. 19). Crop Sci 15:603–604. https://doi.org/10.2135/cropsci1975.0011183X001500040050x

    Article  Google Scholar 

  • Simpson CE, Nelson SC, Starr JL, Woodard KE, Smith OD (1993) Registration of TxAG-6 and TxAG-7 peanut germplasm lines. Crop Sci 33:1418

    Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. CropSci 41:918

    Google Scholar 

  • Simpson CE, Starr JL, Church GT, Burow MD, Paterson AH (2003) Registration of ‘Nema TAM’ peanut. Crop Sci 43:1561. https://doi.org/10.2135/cropsci2003.1561

    Article  Google Scholar 

  • Singh AK, Nigam SN (2016) Chapter 2: Arachis gene pools and genetic improvement in groundnut. In: Rajpal VR et al (eds) Gene pool diversity and crop improvement, sustainable development and biodiversity 10. Springer, Cham, pp 17–75. https://doi.org/10.1007/978-3-319-27096-8_2

    Chapter  Google Scholar 

  • Singh AK, Dwivedi SL, Pande S, Moss JP, Nigam SN, Sastri DC (2003) Registration of rust and late leaf spot resistant peanut germplasm lines. Crop Sci 43(1):440–441

    Article  Google Scholar 

  • Sinha P, Bajaj P, Pazhamala LT, Nayak SN, Pandey MK, Chitikineni A, Huai D, Khan AW, Desai A, Jiang H (2020) Arachis hypogaea gene expression atlas for fastigiata subspecies of cultivated groundnut to accelerate functional and translational genomics applications. Plant Biotechnol J

    Google Scholar 

  • Stalker HT (2017) Utilizing wild species for peanut improvement. Crop Sci 57(3):1102–1120

    Article  Google Scholar 

  • Stalker HT, Moss JP (1987) Speciation, cytogenetics, and utilization of Arachis species. Adv Agron 41:1–40. https://doi.org/10.1016/S0065-2113(08)60801-9

    Article  Google Scholar 

  • Tang G, Xu P, Ma W, Wang F, Liu Z, Wan S, Shan L (2018) Seed-specific expression of AtLEC1 increased oil content and altered fatty acid composition in seeds of peanut (Arachis hypogaea L.). Front Plant Sci 9:260

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical, and morphological descriptors. Genet Resour Crop Evol 50:139–148

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Nadaf HL, Singh S (2011) Phenotypic diversity and identification of wild Arachis accessions with useful agronomic and nutritional traits. Euphytica 182:103–115. https://doi.org/10.1007/s10681-011-0518-7

    Article  Google Scholar 

  • Vadez V, Rao S, Sharma KK, Bhatnagar-Mathur P, Devi MJ (2007) DREB1A allows for more water uptake in groundnut by a large modification in the root/shoot ratio underwater deficit. J SAT Agric Res 5:1–5

    Google Scholar 

  • Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci 242:98–107. https://doi.org/10.1016/j.plantsci.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MVC, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2019) Toward sequence-based breeding in legumes in the post genome sequencing era. Theor Appl Genet 132:797–816

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Qing X, Yu M, Sun Q, Liu F, Qi B, Li X (2019) Production of eicosapentaenoic acid (EPA, 20:5n-3) in transgenic peanut (Arachis hypogaea L.) through the alternative Delta8-desaturase pathway. Mol Biol Rep 46(1):333–342

    Article  CAS  PubMed  Google Scholar 

  • Wen S, Liu H, Li X, Chen X, Hong Y, Li H, Lu Q, Liang X (2018) TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut (Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol 97(1–2):177–185

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Tang G, Bi Y, Liu Z, Shan L (2018) Analysis of the peanut transgenic offspring with depressing AhFAD2 gene. Chin J Biotechnol 34(9):1469–1477

    CAS  Google Scholar 

  • Yin D, Deng S, Zhan K, Cui D (2007) High-oleic peanut oils produced by HpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Rep 25(3–4):154–163

    Article  CAS  Google Scholar 

  • Yin D, Ji C, Ma X, Li H, Zhang W, Li S, Liu F, Zhao K, Li F, Li K (2018) Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly. GigaScience 7(6):giy066

    Article  PubMed Central  Google Scholar 

  • Yin D, Ji C, Song Q, Zhang W, Zhang X, Zhao K, Chen CY, Wang C, He G, Liang Z, Ma X, Li Z, Tang Y, Wang Y, Li K, Ning L, Zhang H, Zhao K, Li X, Yu H, Lei Y, Wang M, Ma L, Zheng H, Zhang Y, Zhang J, Hu W, Chen ZJ (2020) Comparison of Arachis monticola with diploid and cultivated tetraploid genomes reveals asymmetric subgenome evolution and improvement of peanut. Adv Sci 7(4):1901672

    Article  CAS  Google Scholar 

  • Yu B, Jiang H, Pandey MK, Huang L, Huai D, Zhou X, Kang Y, Varshney RK, Sudini HK, Ren X, Luo H, Liu N, Chen W, Guo J, Li W, Ding Y, Jiang Y, Lei Y, Liao B (2020) Identification of two novel peanut genotypes resistant to aflatoxin production and their SNP markers associated with resistance. Toxins (Basel) 12(3)

    Google Scholar 

  • Yuan M, Zhu J, Gong L, He L, Lee C, Han S, Chen C, He G (2019) Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol 19(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Jiang Y, Guo Y, Huang J, Zhou M, Tang Y, Sui J, Wang J, Qiao L (2021) A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant Physiol Biochem 160:175–183

    Article  CAS  PubMed  Google Scholar 

  • Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C, Chang WC, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow CN, Wang J, Deng Y, Wang D, Khan AW, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan SA, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor PB, Pan RL, Paterson AH, Wang X, Ming R, Varshney RK (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51(5):865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babu N. Motagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Motagi, B.N. et al. (2022). Genetic Enhancement of Groundnut: Current Status and Future Prospects. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 4. Springer, Cham. https://doi.org/10.1007/978-3-030-81107-5_3

Download citation

Publish with us

Policies and ethics