Skip to main content

A Timeline of Perezone, the First Isolated Secondary Metabolite in the New World, Covering the Period from 1852 to 2020

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 116

Abstract

This chapter covers a sesquiterpene quinone, commonly named perezone. This molecule is documented as the first secondary metabolite isolated in crystalline form in the New World in 1852. An introduction, with its structure, the IUPAC nomenclature, and the most recent physical and spectroscopic characterizations are firstly described initially. Alongside this, a timeline and scheme with summarized information of the history of this molecule is given including the “Códice Badiano de la Cruz, 1552, highlighting the year of its isolation culminating with information up to 2005. Subsequently, in a chronological order the most recent advances of the target molecule are included and organized in subsections covering the last 15-year period 2006–2020. Finally, recently submitted contributions from the laboratory of the authors are described. It is important to note that the details provided highlight the importance and relevance of perezone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Río de la Loza L (1852) Discurso pronunciado por el Catedrático de Química Médica de la Escuela de Medicina, en el acto público del ramo, el día 23 de Noviembre de 1852. Escritos de Leopoldo Río de la Loza, Escalante, México 1911:94

    Google Scholar 

  2. Hernández-Rodríguez M, Mendoza Sánchez P, Macías Perez ME, Rosales Cruz E, Mera Jiménez E, Aceves-Hernández JM, Nicolás-Vázquez MI, Miranda Ruvalcaba R (2020) In vitro and computational studies of natural products related to perezone as anti-neoplastic agents. Biochimie 171–172:158

    Google Scholar 

  3. Zepeda LG, Burgeño-Tapia E, Pérez-Hernández N, Cuevas G, Joseph-Nathan P (2013) NMR-based conformational analysis of perezone and analogues. Magn Reson Chem 51:245

    Google Scholar 

  4. Cortés E, Ortiz B, Sánchez-Obregón R, Walls F, Yuste F (1997) The mass spectral fragmentation of perezone and related compounds. Rapid Commun Mass Spectrom 11:904

    Google Scholar 

  5. García Guerrero CD, Blanco Dávila F (2004) La cirugía plástica y el Códice de la Cruz-Badiano. Med Univ 6:51

    Google Scholar 

  6. Joseph-Nathan P (2007) Homenaje al doctor Don Leopoldo Río de la Loza en el bicentenario de su natalicio. Bol Soc Quím Méx 1:173

    Google Scholar 

  7. Mylius F (1885) Über die Pipitzahoinsäure. Ber 18:480

    Google Scholar 

  8. Mylius F (1885) Pipitzahoic acid or perezone. Ber 18:936

    Google Scholar 

  9. Anschütz R, Leather W (1885) Über einige Derivate der Pipitzahoinsäure. Ber 18:715

    Google Scholar 

  10. Anschütz R (1885) Über die Pipitzahoinsäure. Ber 18:709

    Google Scholar 

  11. Duyk M (1899) Perezone, a new indicator for alkalimetry. Ann Chem Anal Chem Appl Rev Chem anal Reunions 4:372

    Google Scholar 

  12. Percy Remfry FG (1913) Perezone. J Chem Soc Trans 103:1076

    Article  Google Scholar 

  13. Kögl F, Boer AG (1935) The constitution of perezone. Rec Trav Chim 54:779

    Article  Google Scholar 

  14. Yamaguchi K (1942) Hydroxyquinones. VII. Synthesis of dl-dihydroperezone.Yakugaku Zasshi 62:491

    Google Scholar 

  15. Arigoni D, Jeger O (1954) Über Sesquiterpene und Azulene. 111. Mitt. Über die absolute Konfiguration des Zingiberens. Helv Chim Acta 37:881

    Google Scholar 

  16. Walls F, Salmon M, Padilla J, Joseph-Nathan P, Romo J (1965) Structure of perezone. Bol Inst Quim UNAM 17:3

    CAS  Google Scholar 

  17. Archer DA, Thomson RH (1965) Structure of perezone. Chem Commun:345

    Google Scholar 

  18. Wagner ER, Moss RD, Brooker RM (1965) A correction of the structure of perezone. Tetrahedron Lett:4233

    Google Scholar 

  19. Bates RB, Paknikar SK, Thalacker VP (1965) A 1,3-addition by a hydroquinone: the structure of perezone. Chem Ind:1793

    Google Scholar 

  20. Walls F, Padilla J, Joseph-Nathan P, Giral F, Romo J (1965) The structures of α- and β-pipitzols. Tetrahedron Lett 21:1577

    Article  Google Scholar 

  21. Garcia T, Dominguez E, Romo J (1965) Isolation of hydroxyperezone from Perezia alamani. Bol Inst Quim UNAM 17:16

    CAS  Google Scholar 

  22. Cortes E, Salmon M, Walls F (1965) Total synthesis of perezone and α- and β-pipitzols. Bol Inst Quim UNAM 17:19

    CAS  Google Scholar 

  23. Walls F, Padilla J, Joseph-Nathan P, Giral F, Escobar M, Romo J (1966) Studies in perezone derivatives: structures of the pipitzols and perezinone. Tetrahedron 22:2387

    Article  CAS  Google Scholar 

  24. Padilla J, Romo J, Walls F, Crabbe P (1967) Optical properties of derivatives of the perezone series and of pipitzols. Rev Soc Quím Méx 11:7

    CAS  Google Scholar 

  25. Joseph-Nathan P, Reyes J, González MP (1968) Contribution to the chemistry of perezone. Tetrahedron 24:4007

    Article  CAS  Google Scholar 

  26. Chandler AD Jr, Florestano HJ (The Dow Chemical Company) (1969) Griseofulvin-perezone composition. US Pat No 3,471,615A

    Google Scholar 

  27. Joseph-Nathan P, Gonzalez MP, Johnson LRF, Shoolery JN (1971) Natural abundance carbon-13 NMR studies of perezone and derivatives. Org Magn Reson 3:23

    Google Scholar 

  28. Joseph-Nathan P, González MP, Rodríguez VM (1972) Terpenoids of Perezia heblecada. Phytochemistry 11:1803

    Article  CAS  Google Scholar 

  29. Joseph-Nathan P, González MP, García GE (1974) Further studies on hydroxyperezone derivatives. Tetrahedron 30:3461

    Article  CAS  Google Scholar 

  30. Salazar I, Enríquez R, Díaz E, Walls F (1974) The photochemical rearrangement of 5-(1′,5′-dimethylhex-4′-enyl)-6-methoxy-7a-methyl-3H-indazole-4,7(3aH,7aH)-dione, the pyrazoline derivative of O-methylperezone. Aust J Chem 27:163

    Google Scholar 

  31. Joseph-Nathan P, García GE, Mendoza V (1977) Quinones from Perezia runcinata. Phytochemistry 16:1086

    Article  CAS  Google Scholar 

  32. Bohlmann F, Zdero C (1977) Über Inhaltsstoffe der Tribus Mutisieae. Phytochemistry 16:239

    Article  CAS  Google Scholar 

  33. Joseph-Nathan P, Mendoza V, García E (1977) The reaction mechanism of the perezone-pipitzol transformation. Tetrahedron 33:1573

    Article  CAS  Google Scholar 

  34. Bohlmann F, Zdero C, King RM, Robinson H (1979) Neueperezon-derivate aus Acourtia thurberi. Phytochemistry 18:1894

    Article  CAS  Google Scholar 

  35. Joseph-Nathan P, Mejía G, Abramo-Bruno D (1979) 13C NMR assignment of the side-chain methyls of C27 steroids. J Am Chem Soc 101:1289

    Article  CAS  Google Scholar 

  36. Barrios H, Salazar I, Enriquez R, Diaz E, Walls F (1979) Isolation and structure determination of two new products formed by the irradiation of pyrazolino-O-methylperezone. Rev Latinoam Quim 10:69

    Google Scholar 

  37. Enríquez R, Ortega J, Lozoya X (1980) Active components in Perezia roots. J Ethnopharmacol 2:389

    Article  PubMed  Google Scholar 

  38. Barrera E, Barrios H, Walls F (1980) Intramolecular photocycloaddition of O-methylmethoxyperezone. Rev Soc Quím Méx 24:161

    CAS  Google Scholar 

  39. Sánchez IH, Yañez R, Enríquez R, Joseph-Nathan P (1981) A reaction mechanism change in the Lewis acid catalyzed perezone-pipitzol transformation. J Org Chem 46:2818

    Article  Google Scholar 

  40. Joseph-Nathan P, Abramo-Bruno D, Ortega DA (1981) Carbon-13 NMR studies of benzoquinones. Org Magn Reson 15:311

    Article  CAS  Google Scholar 

  41. Bohlmann F, Zdero C, Robinson H, King RM (1981) A diterpene, a sesquiterpene quinone and flavones from Wyethia helenioides. Phytochemistry 20:2245

    Article  CAS  Google Scholar 

  42. Joseph-Nathan P, Hernández JD, Román LU, García E, Mendoza V (1982) Sesquiterpenes from Perezia carpholepis. Phytochemistry 21:669

    Article  CAS  Google Scholar 

  43. Joseph-Nathan P, Hernández JD, Román LU, García E, Mendoza V, Mendoza S (1982) Coumarin and terpenoids from Perezia alamani var. oolepis. Phytochemistry 21:1129

    Google Scholar 

  44. Bohlmann F, Ahmed M, Grenz M, King RM, Robinson H (1983) Bisabolene derivatives and other constituents from Coreopsis species. Phytochemistry 22:2858

    Article  CAS  Google Scholar 

  45. Sánchez IH, Basurto F (1984) The stereocontrol of the perezone to pipitzol transformation. J Nat Prod 47:382

    Article  Google Scholar 

  46. Sánchez IH, Larraza MI (1985) Formal total synthesis of β-pipitzol. Tetrahedron 41:2355

    Article  Google Scholar 

  47. Sánchez IH, Mendoza S, Calderón M, Larraza MI, Flores HJ (1985) Total synthesis of (±)-perezone. J Org Chem 50:5077

    Article  Google Scholar 

  48. Bohlmann F, Banerjee S, Jakupovic J, King RM, Robinson H (1985) Bisabolene derivatives and acetylenic compounds from Peruvian Coreopsis species. Phytochemistry 24:1295

    Article  CAS  Google Scholar 

  49. Soriano-García M, Toscano RA, Flores-Valverde E, Montoya-Vega F, López-Celis I (1986) Structure of 2-(1,5-dimethyl-4-hexenyl)-3-hydroxy-5-methyl-1,4-benzoquinone (perezone), a sesquiterpene. Acta Cryst C 42:327

    Article  Google Scholar 

  50. Barrios H, Salazar I, Díaz E, Walls F, Joseph-Nathan P (1986) Carbon-13 NMR studies on perezone transformation products. Rev Latinoam Quím 16:163

    CAS  Google Scholar 

  51. Jimenez-Cardoso JM, Alcantara G, Campos E, Carabez A, Wusterhaus A (1986) Light and electron microscopy of hepatocytes of rats treated with perezone. Preliminary report. Arch Invest Med 17:313

    CAS  Google Scholar 

  52. Joseph-Nathan P, Martínez E, Rojas M, Santillan RL (1987) The solid-state versus the solution structure of 6-hydroxyperezone. J Nat Prod 50:860

    Article  CAS  Google Scholar 

  53. García GE, Mendoza V, Guzmán BA (1987) Perezone and related sesquiterpenes from parvifoline. J Nat Prod 50:1055

    Article  Google Scholar 

  54. Joseph-Nathan P, Garibay ME, Santillan RL (1987) BF3-catalyzed cycloadditions of naturally occurring sesquiterpene p-benzoquinones. J Org Chem 52:759

    Article  CAS  Google Scholar 

  55. Cuéllar A, Cárabez A, Chávez E (1987) Ca2+ releasing effect of perezone on adrenal cortex mitochondria. Life Sci 41:2047

    Article  PubMed  Google Scholar 

  56. Jolad SD, Timmermann BN, Hoffmann JJ, Bates RB, Camou FA, Cole JR (1988) Sesquiterpenoids from Coreocarpus arizonicus. Phytochemistry 27:3545

    Article  CAS  Google Scholar 

  57. Carabez TA, Sandoval ZF (1988) The action of the sesquiterpene benzoquinone, perezone, on electron transport in biological membranes. Arch Biochem Biophys 260:293

    Article  CAS  PubMed  Google Scholar 

  58. De Pahn EM, Molina Portela MP, Stoppani AOM (1988) Effects of quinones and nitrofurans on Trypanosoma mega and Crithidia fasciculata. Rev Argent Microbiol 20:107

    PubMed  Google Scholar 

  59. Joseph-Nathan P, Santillan RL (1989) The chemistry of perezone and its consequences. In Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 5 (Part B). Elsevier, Amsterdam, p 763, and references therein

    Google Scholar 

  60. Hausen BM, Soriano-Garcia M, Flores-Valverde E (1989) The sensitizing capacity of hydroxyperezone. Contact Derm 21:120

    Article  CAS  Google Scholar 

  61. Perri ST, Dyke HJ, Moore HW (1989) Rearrangement of cyclobutenones to 2,5- and 2,6-dialkylated 1,4-benzoquinones. Synthesis of O-methylperezone and O-methylisoperezone. J Org Chem 54:2032

    Google Scholar 

  62. Ehnsen A, Karabelas K, Heerding JM, Moore HW (1990) Synthesis of hydroxyquinones and related compounds: semisquaric acids, (±)-terreic acid, (±)-perezone, and (±)-isoperezone. J Org Chem 55:1177

    Article  Google Scholar 

  63. Perri ST, Moore HW (1990) Rearrangements of cyclobutenones. Synthesis of benzoquinones from 4-alkenyl-4-hydroxycyclobutenones. J Am Chem Soc 112:1897

    Google Scholar 

  64. Zdero C, Bohlmann F, Sanchez H, Dominguez XA (1991) Isocedrene derivatives and other constituents from Acourtia nana. Phytochemistry 30:2695

    Article  CAS  Google Scholar 

  65. González FJ, Aceves JM, Miranda R, González I (1991) The electrochemical reduction of perezone in the presence of benzoic acid in acetonitrile. J Electroanal Chem 310:293

    Article  Google Scholar 

  66. Molina Portela MP, De Pahn EM, Galeffi C, Stoppani AOM (1991) Effect of lipophilic ortho-naphthoquinones on the growth and peroxide production by Leptomonas seymouri and Crithidia fasciculata. Rev Argent Microbiol 23:1

    CAS  PubMed  Google Scholar 

  67. Perusquia M, Ibanez R, Alcantara G (1991) Relaxant effect of perezone on contraction of isolated rat uterus. Med Sci Res 19:857

    CAS  Google Scholar 

  68. Vidrio H, Alcantara G (1992) Cardiovascular effects of perezone in the anesthesized rat. Rev Fac Med UNAM 35:104

    CAS  Google Scholar 

  69. Garcia X, Cano L, Herrera L, Magana NR, Alcantara G, Gijon E (1992) Perezone relaxing vascular action. Proc West Pharmacol Soc 35:93

    CAS  PubMed  Google Scholar 

  70. Joseph-Nathan P, Burgeño-Tapia E, Santillan RL (1993) Further BF3·Et2O-catalyzed cycloadditions of sesquiterpenic p-benzoquinones. J Nat Prod 56:1758

    Article  CAS  Google Scholar 

  71. Rodríguez-Hernández A, Barrios H, Collera O, Enríquez RG, Ortiz B, Sánchez-Obregón R, Walls F, Yuste F, Reynolds WF, Yu M (1994) Isomerization of perezone into isoperezone and preparation of dihydroisoperezinone. Nat Prod Lett 4:133

    Article  Google Scholar 

  72. Barcelo Quintal ID, Solis Correa HE, Flores Valverde E (1994) Kinetic stability of perezonates of cobalt, nickel, and zinc in hydro-alcohol solutions. Rev Soc Quím Méx 38:110

    CAS  Google Scholar 

  73. Yuste F, Barrios H, Díaz E, Ortiz B, Sánchez-Obregón R, Walls F (1994) The structure of β-isopipitzol. Tetrahedron Lett 35:9329

    Article  CAS  Google Scholar 

  74. Garcia X, Alcantara-Sarabia G, Cartas-Heredia L, Gijon E (1995) Actions of perezone on rat smooth muscle. Gen Pharmacol 26:1741

    Article  CAS  Google Scholar 

  75. Enríquez RG, Ortiz B, Alducin E, Walls F, Gnecco D, Yu M, Reynolds WF (1995) The reaction of perezone and isoperezone with hydroxylamine: a surprisingly facile method for introducing an NH2 group into the quinone functionality. Nat Prod Lett 6:103

    Article  Google Scholar 

  76. Reynolds WF, Yu M, Ortiz B, Rodríguez A, Yuste F, Walls F, Enríquez RG, Gnecco D (1995) Detailed characterization by two-dimensional NMR of two unusual bicyclo[2.2.2]octanedione derivatives produced by the reaction of perezone with thiourea. Magn Reson Chem 33:3

    Google Scholar 

  77. Arellano J, Vázquez F, Villegas T, Hernández G (1996) Establishment of transformed roots culture of Perezia cuernavacana producing the sesquiterpene quinone perezone. Plant Cell Rep 15:455

    Article  CAS  PubMed  Google Scholar 

  78. Yuste F, Barrios H, Díaz E, Enríquez RG, González-Gutiérrez L, Ortiz B, Sánchez-Obregón R, Walls F (1996) The ultraviolet irradiation of isoperezone acetate. 2D NMR structure elucidation. Nat Prod Lett 8:181

    Google Scholar 

  79. Alarcon-Aguilar FJ, Roman-Ramos R, Jimenez-Estrada M, Reyes-Chilpa R, Gonzales-Paredes B, Flores-Saenz JL (1997) Effects of three Mexican medicinal plants (Asteraceae) on blood glucose levels in healthy mice and rabbits. J Ethnopharmacol 55:171

    Article  CAS  PubMed  Google Scholar 

  80. Rubio M, Ramírez GG, García Jiménez F, Salcedo R, Belmont MA (1997) About perezone derivatives, a theoretical approach. J Mol Struct THEOCHEM 397:239

    Article  CAS  Google Scholar 

  81. Garcia E, Mendoza V, Guzman JA (1997) Formation of mansonones from naturally occurring para-benzoquinones. Nat Prod Lett 11:67

    Article  CAS  Google Scholar 

  82. Frontana BA, Cárdenas J, Rodríguez-Hahn L, Baeza A (1997) Preparative electrochemical reductive methylation of ortho-hydroxy-para-benzoquinones. Tetrahedron 53:469

    Article  CAS  Google Scholar 

  83. Burgeño-Tapia E, Joseph-Nathan P (1997) Detailed studies on perezone rearrangements. Monatsh Chem 128:651

    Article  Google Scholar 

  84. Enríquez RG, Fernández-G JM, Gnecco D, Pénicaud A, Reynolds WF (1998) The crystal and molecular structure of isoperezone, aminoperezone, and isoaminoperezone: a comparative study of their crystal packing. J Chem Crystallogr 28:529

    Article  Google Scholar 

  85. Téllez FJ, Carvajal K, Cruz D, Cárabez A, Chávez E (1999) Effect of perezone on arrhythmias and markers of cell injury during reperfusion in the anesthetized rat. Life Sci 65:1615

    Article  PubMed  Google Scholar 

  86. Burgeño-Tapia E, Joseph-Nathan P (2000) 13C NMR substituent chemical shifts in hydroxyl-p-benzoquinones. Magn Reson Chem 38:390

    Article  Google Scholar 

  87. Huipe-Nava E, Mendoza GV, García GE, Gúzman JA, Salvador JL, Soriano-García M (2000) Structure of α-isopipitzol (4,8,8,10-tetramethyl-9-hydroxy-2,12-dioxotricyclo[5,3,1,03,7]undec-1-en). Anal Sci 16:1239

    Article  CAS  Google Scholar 

  88. de la Peña A, Izaguirre R, Baños G, Viveros M, Enríquez RG, Fernández-G JM (2001) Effect of perezone, aminoperezone and their corresponding isomers isoperezone and isoaminoperezone upon in vitro platelet aggregation. Phytomedicine 8:465

    Article  Google Scholar 

  89. Aguilar-Martínez M, Bautista-Martínez JA, Macías Ruvalcaba N, González I, Tovar E, Marín del Alizal T, Collera O, Cuevas G (2001) Molecular structure of substituted phenylamine α-OMe- and α-OH-p-benzoquinone derivatives. Synthesis and correlation of spectroscopic, electrochemical, and theoretical parameters. J Org Chem 66:8349

    Google Scholar 

  90. Bautista-Martínez JA, GonzálezI A-M (2004) Correlation of voltammetric behavior of α-hydroxy- and α-methoxy-quinones with the range of acidity level in acetonitrile. J Electroanal Chem 573:289

    Article  Google Scholar 

  91. Frontana C, Frontana-Uribe BA, González I. Electrochemical and ESR study on the transformation processes of α-hydroxyquinones. J Electroanal Chem 573:307

    Google Scholar 

  92. Guo XD, Huang ZS, Bao YD, An LK, Ma L, Gu LQ (2005) Two new sesquiterpenoids from Helicteres angustifolia. Chin Chem Lett 16:49

    CAS  Google Scholar 

  93. Frontana C, González I (2007) Structural factors affecting the reactivity of natural α-hydroxyquinones. An electrochemical and ESR study. ECS Trans 3:13

    Google Scholar 

  94. Frontana C, González I (2007) Effects of the molecular structure on the electrochemical properties of naturally occurring α-hydroxyquinones. An electrochemical and ESR study. J Electroanal Chem 603:155

    Google Scholar 

  95. Bautista-Martínez JA, Frontana C, Solano-Peralta A, Reyes-Hernández CI, Cuevas G, González I, Aguilar-Martinez M (2007) Influence of the substituent on the reactivity of anilinoperezones. Analysis of the influence of the C-12–C-13 double bond. ECS Trans 3:45

    Google Scholar 

  96. Espinoza-Vázquez A, Rodríguez-Gómez FJ, Mata R, Madariaga-Mazón A, Ángeles-Beltrán D (2017) Perezone as corrosion inhibitor for AISI 1018 steel immersed in NaCl saturated with CO2. J Solid State Electrochem 21:1687

    Article  Google Scholar 

  97. Martínez J, Velasco-Bejarano B, Delgado F, Pozas R, Torres Domínguez HM, Trujillo Ferrara JG, Arroyo GA, Miranda R (2008) Eco-contribution to the chemistry of perezone, a comparative study, using different modes of activation and solventless conditions. Nat Prod Commun 3:1465

    Google Scholar 

  98. Escobedo-González RG, Pérez Martínez H, Nicolás-Vázquez MI, Martínez J, Gómez G, Nava Serrano J, Carranza Téllez V, Vargas-Requena CL, Miranda Ruvalcaba R (2016) Green production of indolylquinones, derivatives of perezone, and related molecules, promising antineoplastic compounds. J Chem 2016:ID3870539

    Article  Google Scholar 

  99. Escobedo-González R, Vázquez-Cabañas A, Martínez-González A, Mendoza-Sánchez P, Saavedra-Leos Z, Cruz-Olivares J, Nava Serrano J, Martínez J, Miranda Ruvalcaba R (2019) Green approach extraction of perezone from the roots of Acourtia platyphilla (A. Gray): a comparison of four activating modes and supercritical carbon dioxide. Molecules 24:3035

    Google Scholar 

  100. Concepción Lozada M, Soria-Arteche O, Ramírez Apan MT, Nieto-Camacho A, Enríquez RG, Izquierdo T, Jiménez-Corona A (2012) Synthesis, cytotoxic and antioxidant evaluations of amino derivatives from perezone. Bioorg Med Chem 20:5077

    Article  PubMed  Google Scholar 

  101. Ylijoki KEO, Stryker JM (2013) [5+2] cycloaddition reactions in organic and natural product synthesis. Chem Rev 113:2244

    Article  CAS  PubMed  Google Scholar 

  102. Chacón-García L, Valle-Sánchez M, Contreras-Celedon CA (2013) A novel semisynthetic anion receptor: synthesis and ion recognition of (1H-pyrrol-2-yl)-4-oxo-perezone. Lett Org Chem 10:632

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gao S, Hu X (2017) A concise synthetic approach to parvistemin A and (±)-diperezone. Org Chem Front 4:1493

    Article  CAS  Google Scholar 

  104. Liu Y, Wang X, Chen S, Fu S, Liu B (2018) Iron-catalyzed intramolecular perezone-type [5+2] cycloaddition: access to tricyclo[6.3.1.01,6]dodecane. Org Lett 20:2934

    Google Scholar 

  105. Long Y, Ding Y, Wu H, Qu C, Liang H, Zhang M, Zhao X, Long X, Wang S, Puno P-T, Deng J (2019) Total synthesis of (–)-perezoperezone through an intermolecular [5+2] homodimerization of hydroxyl p-quinone. Angew Chem Int Ed 58:17552

    Article  CAS  Google Scholar 

  106. Roura-Pérez G, Quiróz B, Aguilar-Martínez M, Frontana C, Solano A, González I, Bautista-Martínez JA, Jiménez-Barbero J, Cuevas G (2007) Remote position substituents as modulators of conformational and reactive properties of quinones. Relevance of the π/π intramolecular interaction. J Org Chem 72:1883

    Google Scholar 

  107. Burgeño-Tapia E, Cerda-García-Rojas CM, Joseph-Nathan P (2012) Conformational analysis of perezone and dihydroperezone using vibratonial circular dichroism. Phytochemistry 74:190

    Article  Google Scholar 

  108. Reyes-López E, Quiroz-García B, Carpio-Martínez P, Jiménez-Barbero J, Cortés-Guzmán F, Esturau-Escofet N, Cuevas G (2017) The folded conformation of perezone revisited. Long range nOe interaction in small molecules: interpretable small signals or useless large artifacts? J Mex Chem Soc 61:177

    Google Scholar 

  109. Martínez J, Hernández Rodríguez M, Escobedo-González R, Nicolás-Vázquez MI, Saavedra-Leos Z, Miranda Ruvalcaba R (2019) Computational characterization of perezone, isoperezone, and their sulfur-derivatives: anti-inflammatory activity. ChemSelect 4:13333

    Google Scholar 

  110. Rojo-Portillo T, Reyes-López E, Hernández-Huerta E, Quiroz-García B, Joseph-Nathan P, Sánchez-Castellanos M, Cuétara-Guadarrama F, Cuevas G (2020) Is the VCD spectrum a fingerprint of the conformational population? The conformation of perezone in the spotlight. J Mol Struct 1202:127273

    Google Scholar 

  111. Burgeño-Tapia E, Castillo L, González-Coloma A, Joseph-Nathan P (2008) Antifeedant and phytotoxic activity of the sesquiterpene p-benzoquinone perezone and some of its derivatives. J Chem Ecol 34:766

    Article  Google Scholar 

  112. Gheeya JS, Chen Q-R, Benjamin CD, Cheuk AT, Tsang P, Chung J-Y, Metaferia BB, Badgett TC, Johansson P, Wei JS, Hewitt SM, Khan J (2009) Screening a panel of drugs with diverse mechanisms of action yields potential therapeutic agents against neuroblastoma. Cancer Biol Ther 8:2386

    Article  CAS  PubMed  Google Scholar 

  113. Sánchez-Torres LE, Torres-Martínez JA, Godínez-Victoria M, Omar J-M, Velasco-Bejarano B (2010) Perezone and its isomer isoperezone induce caspase-dependent and caspase-independent cell death. Phytomedicine 17:614

    Article  PubMed  Google Scholar 

  114. Abreu PA, Wilke DV, Araujo AJ, Marinho-Filho JDB, Ferreira EG, Ribeiro CMR, Pinheiro LS, Amorim JW, Valverde AL, Epifanio RA, Costa-Lotufo LV, Jimenez PC (2015) Perezone, from the gorgonian Pseudopterogorgia rigida, induces oxidative stress in human leukemia cells. Rev Bras Farmacogn 25:634

    Article  CAS  Google Scholar 

  115. Georgantea P, Ioannou E, Evain-Bana E, Bagrel D, Martinet N, Vagias C, Roussis V (2016) Sesquiterpenes with inhibitory activity against CDC25 phosphatases from the soft coral Pseudopterogorgia rigida. Tetrahedron 72:3262

    Article  CAS  Google Scholar 

  116. Escobedo-González RG, Vargas-Requena CL, Moyers-Montoya E, Aceves-Hernández JM, Nicolás-Vázquez MI, Miranda Ruvalcaba R (2017) In silico study of the pharmacologic properties and cytotoxicity pathways in cancer cells of various indolylquinone analogues of perezone. Molecules 22:1060

    Article  PubMed Central  Google Scholar 

  117. Martínez AL, Madariaga-Mazón A, Rivero-Cruz I, Bye R, Mata R (2017) Antidiabetic and antihyperalgesic effects of a decoction and compounds from Acourtia thurberi. Planta Med 83:534

    PubMed  Google Scholar 

  118. Luna-Vázquez FJ, Ibarra-Alvarado C, Camacho-Corona MR, Rojas-Molina A, Rojas-Molina I, García A, Bah M (2018) Vasodilator activity of compounds isolated from plants used in Mexican traditional medicine. Molecules 23:1474

    Article  PubMed Central  Google Scholar 

  119. Hernández-Rodríguez M, Mendoza Sánchez PI, Macias Perez ME, Rosalez Cruz E, Mera Jiménez E, Nicolás-Vázquez MI, Miranda Ruvalcaba R (2019) In vitro and computational studies showed that perezone inhibits PARP-1 and induces changes in the redox state of K562 cells. Arch Biochem Biophys 671:225

    Article  PubMed  Google Scholar 

  120. Gómez-Serrano G, Cristiani-Urbina E, Villegas-Garrido TL (2012) Time-dependent perezone production in different culture systems of Acourtia cordata. Cent Eur J Biol 7:507

    Google Scholar 

  121. Georgantea P, Ioannou E, Vagias C, Roussis V (2013) Perezoperezone and curcuperezone: bisabolane dimers from the soft coral Pseudopterogorgia rigida. Tetrahedron Lett 54:6920

    Article  CAS  Google Scholar 

  122. Escobedo-González RG, Bahena L, Arias Tellez JL, Hinojosa Torres J, Miranda Ruvalcaba R, Aceves-Hernández JM (2015) Characterization and comparison of perezone with some analogues. Experimental and theoretical study. J Mol Struct 1097:98

    Google Scholar 

  123. Hernández-Rodríguez M, Mendoza Sánchez PI, Macias Perez ME, Rosales Cruz E, Mera Jiménez E, Żołek T, Maciejewska D, Nicolás-Vázquez MI, Miranda Ruvalcaba R (2021) Search of perezone chemically related compounds as possible anti-neoplastic agents. Med Chem Res, submitted

    Google Scholar 

  124. Escobedo González RG, Martínez J, Vargas Requena C, Hernández-Rodríguez M, Nicolás-Vázquez MI, Moyers Montoya ED, Miranda Ruvalcaba R (2021) Wound healing perezone acitivy study. Bioorg Med Chem, submitted

    Google Scholar 

  125. Hernández-Rodríguez M, Nicolás-Vázquez MI, Macías Pérez ME, Mera Jiménez E, Miranda Ruvalcaba R (2020) Computational studies to explore the binding mode of perezone to PARP-1. Int J Quantum Chem, submitted

    Google Scholar 

  126. Martínez J, Hernández-Rodríguez M, Saavedra-Leos Z, Miranda Ruvalcaba R, Escobedo-González R, Nicolás-Vázquez MI (2020) Can (S)-stereoisomers of perezone and its derivatives show similar activity to its (R)-stereoisomers? A computational characterization and docking study. ChemSelect, submitted

    Google Scholar 

  127. Escobedo González RG, Cruz-Olivares J, Nicolás-Vázquez MI, Miranda Ruvalcaba R (2020) Theoretical and experimental study of perezone solubility in supercritical dioxide. J Chem Eng Data, submitted

    Google Scholar 

  128. Escobedo González RG, Martínez J, Aceves-Hernández JM, Vargas Requena C, Hernández-Rodríguez M, Nicolás-Vázquez MI, Miranda Ruvalcaba R (2020) Green approach to perezone C-12–C-13 oxidizing synthesis, theoretical study and cytotoxic evaluation of the corresponding products. Bioorg Med Chem, submitted

    Google Scholar 

  129. Mendoza Sánchez P (2021) Nuevas contribuciones a la química de la perezona (New contributions to the chemistry of perezone). Ph.D. Thesis, Faculty of Superior Studies Cuautitlan-UNAM, Cuautitlan Izcalli-State of Mexico, in progress

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to PAPIIT-UNAM IN212421, in addition to the Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGTIC-UNAM) for the use of the supercomputer MIZTLI-LANCAD-UNAM-DGTIC-400. Thanks are due to Moisés Hernández Duarte for technical assistance. Pablo Mendoza acknowledges CONACyT for a Ph.D. scholarship (CVU 685907/628682).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel Martínez or René Miranda Ruvalcaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Escobedo-González, R., Mendoza, P., Nicolás-Vázquez, M.I., Hernández-Rodríguez, M., Martínez, J., Miranda Ruvalcaba, R. (2021). A Timeline of Perezone, the First Isolated Secondary Metabolite in the New World, Covering the Period from 1852 to 2020. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Progress in the Chemistry of Organic Natural Products 116. Progress in the Chemistry of Organic Natural Products, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-80560-9_3

Download citation

Publish with us

Policies and ethics