Skip to main content

Microbial Remediation of Pharmaceuticals and Personal Care Products

  • Chapter
  • First Online:
Innovations in Biotechnology for a Sustainable Future

Abstract

The pharmaceutical and personal care products (PPCPs) comprise prescribed and non-prescribed drugs, whereas the personal care products (PCPs) are being used to improve the quality of human life. The synthesis and use of PPCPs are increasing globally because of the growing population. The PPCPs contain organic compounds like antibiotics, analgesics, hormones, endocrine disruptors, and UV filters used in the sunscreen. In fact these pharmaceuticals are metabolized by the host and lateron excreted into the environment through urine and feces while the PCPs enter the environment through direct or indirect metabolization pathways. These PPCPs, either in parent form or as a metabolite conjugate, are then released in the surface water as well as groundwater, thus polluting them. The PPCPs may cause adverse effects to aquatic organisms and human health due to their high potential to act biologically even at nanogram levels. The PPCPs are designed in such a way that can target enzymatic, metabolic, and cell-signaling mechanisms even at a lower dose. However, when the PPCPs enter the environment, they are still active and may provoke ecotoxicological effects on non-target organisms. This might adversely affect the key physiological functions, metabolism, and reproduction even at lower dosage. Some of these PPCPs at lower concentration may not exert significant toxic response but might elicit considerable ecotoxicity when they are present in mixtures. Furthermore, there are chances of generating antibiotic resistant microorganisms due to their long time exposure to the antibiotics which are the most common PPCPs. Further, the metabolites produced from a parent pollutant may exert significant lethal response when compared to parent pollutant. Due to their adverse effects on the environment, it is essential to remediate the pharmaceutical compounds by the novel microorganisms. Therefore, this chapter is mainly focused on the microbial remediation of PPCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aissaoui, S., Ouled-Haddar, H., Sifour, M., Beggah, C., & Benhamada, F. (2017). Biological removal of the mixed pharmaceuticals: Diclofenac, ibuprofen, and sulfamethoxazole using a bacterial consortium. Iranian Journal of Biotechnology, 15, 135–142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory mycology (4th ed.). John Wiley.

    Google Scholar 

  • Almeida, B., Kjeldal, H., Lolas, I., Knudsen, A. D., Carvalho, G., Nielsen, K. L., Crespo, M. B., Stensballe, A., & Nielsen, J. L. (2013). Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11. Biodegradation, 24(5), 615–630.

    Article  CAS  PubMed  Google Scholar 

  • Anastasi, A., Tigini, V., & Varese, G. C. (2013). The bioremediation potential of different ecophysiological groups of fungi. In E. M. Goltapeh, Y. R. Danesh, & A. Varma (Eds.), Fungi as bioremediators (Vol. 32, pp. 29–49). Springer.

    Chapter  Google Scholar 

  • Andra, J. A., Augusto, F., & Jardim, I. C. S. F. (2010). Biorremediação de solos contaminados por petróleo e seusderivados. Eclética Química, 35, 17–43.

    Article  CAS  Google Scholar 

  • Asha, S., & Vidyavathi, M. (2009). Cunninghamella – A microbial model for drug metabolism studies – A review. Biotechnology Advances, 27, 16–29.

    Article  CAS  PubMed  Google Scholar 

  • Aydin, E., & Talini, I. (2013). Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. Chemosphere, 90, 2004–2012.

    Article  CAS  PubMed  Google Scholar 

  • Badia-Fabregat, M., Lucas, D., Gros, M., Rodríguez-Mozaz, S., Barceló, D., & Caminal, G. (2015). Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. Journal of Hazardous Materials, 283, 663–671.

    Article  CAS  PubMed  Google Scholar 

  • Bass, D., & Richards, T. A. (2011). Three reasons to re-evaluate fungal diversity ‘on Earth and in the ocean’. Fungal Biology Reviews, 25, 159–164.

    Article  Google Scholar 

  • Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., & Leng, M. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 372, 413–425.

    Article  CAS  Google Scholar 

  • Bhardwaj, G., Cameotra, S. S., & Chopra, H. K. (2013). Biosurfactants from fungi: A review. Journal of Petroleum & Environmental Biotechnology, 4, 1–6.

    Article  CAS  Google Scholar 

  • Blackwell, M. (2011). The fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany, 98, 426–438.

    Article  PubMed  Google Scholar 

  • Blair, B., Crago, J. P., Hedman, C. J., & Klaper, R. D. (2013a). Pharmaceuticals and personal care products in the Great Lakes above concentrations of environmental concern. Chemosphere, 93, 2116–2123.

    Article  CAS  PubMed  Google Scholar 

  • Blair, B. D., Crago, J. P., Hedman, C., Treguer, R. J. F., Magruder, C., & Royer, L. S. (2013b). Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Science of the Total Environment, 444, 515–521.

    Article  CAS  Google Scholar 

  • Bokbolet, M., Yenigun, O., & Yucel, I. (1999). Sorption studies of 2,4-D on selected soils. Water, Air, and Soil Pollution, 111(1), 75–88.

    Article  Google Scholar 

  • Boopathy, R. (2011). Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67.

    Article  Google Scholar 

  • Bueno, M. J., Gomez, M. J., Herrera, S., Hernando, M. D., Agüera, A., & Fernández-Alba, A. R. (2012). Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environmental Pollution, 164, 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Caracciolo, A. B., Topp, E., & Grenni, P. (2015). Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. Journal of Pharmaceutical and Biomedical Analysis, 106, 25–36.

    Article  CAS  Google Scholar 

  • Carballa, M., Omil, F., Ternes, T., & Lema, J. M. (2007). Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 41(10), 2139–2150.

    Article  CAS  PubMed  Google Scholar 

  • Carballa, M., Fink, G., Omil, F., Lema, J. M., & Ternes, T. (2008). Determination of the solidwater distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Research, 42, 287–295.

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: Past, present and future applications in bioremediation. Journal of Industrial Microbiology & Biotechnology, 19, 324–333.

    Article  CAS  Google Scholar 

  • Cerqueira, V. S., Hollenbach, E. B., Maboni, F., Vainstein, M. H., Camargo, F. A., & Do Carmo, R. (2011). Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource Technology, 102(23), 11003–11010.

    Article  CAS  PubMed  Google Scholar 

  • Cha, C. J., Doerge, D. R., & Cerniglia, C. E. (2001). Biotransformation of malachite green by the fungus Cunninghamella elegans. Applied and Environmental Microbiology, 67, 4358–4360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., & Rosazza, J. P. N. (1994). Microbial transformation of ibuprofen by a Nocardia species. Applied and Environmental Microbiology, 60, 1292–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, B. L., Wang, Y. S., & Hu, D. F. (2010). Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. Journal of Hazardous Materials, 179, 845–851.

    Article  CAS  PubMed  Google Scholar 

  • Cho, K., Lee, C. H., & Ko, K. (2016). Use of phenol-induced oxidative stress acclimation to stimulate cell growth and biodiesel production by the oceanic microalga Dunaliella salina. Algal Research, 17, 61–66.

    Article  Google Scholar 

  • Choi, Y. Y., Baek, S. R., Kim, J. I., Choi, J. W., Hur, J., & Lee, T. U. (2017). Characteristics and biodegradability of wastewater organic matter in municipal wastewater treatment plants collecting domestic wastewater and industrial discharge. Water, 9, 409.

    Article  CAS  Google Scholar 

  • Cicatiello, P., Gravagnuolo, A. M., Gnavi, G., Varese, G. C., & Giardina, P. (2016). Marine fungi as source of new hydrophobins. International Journal of Biological Macromolecules, 92, 1229–1233.

    Article  CAS  PubMed  Google Scholar 

  • Cirja, M., Ivashechkin, P., Schaffer, A., & Corvini, P. F. X. (2008). Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Reviews in Environmental Science and Biotechnology, 7, 61–78.

    Article  CAS  Google Scholar 

  • Das, M. P., Bashwant, M., Kumar, K., & Das, J. (2012). Control of pharmaceutical effluent parameters through bioremediation. Journal of Chemical and Pharmaceutical Research, 4, 1061–1065.

    CAS  Google Scholar 

  • Delrue, F., Álvarez-Díaz, P. D., Fon-Sing, S., Fleury, G., & Sassi, J. F. (2016). The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies, 9, 1–19.

    Article  CAS  Google Scholar 

  • Dialynas, E., & Diamadopoulos, E. (2012). The effect of biomass adsorption on the removal of selected pharmaceutical compounds in an immersed membrane bioreactor system. Journal of Chemical Technology and Biotechnology, 87, 232–237.

    Article  CAS  Google Scholar 

  • Dijkshoorn, L., Nemec, A., & Seifert, H. (2007). An increasing threat in hospitals: Multidrug resistant Acinetobacter baumannii. Nature Reviews. Microbiology, 5, 939–951.

    Article  CAS  PubMed  Google Scholar 

  • Domaradzka, D., Guzik, U., Hupert-Kocurek, K., & Wojcieszyńska, D. (2015). Co-metabolic degradation of naproxen by Planococcus sp. strain S5. Water, Air, and Soil Pollution, 226, 297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durairaj, P., Malla, S., Nadarajan, S. P., Lee, P. G., Jung, E., & Park, H. H. (2013). Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 14, 45.

    Article  CAS  Google Scholar 

  • Evangelista, S., Cooper, D., & Yargeau, V. (2010). The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids. Chemosphere, 79, 1084–1088.

    Article  CAS  PubMed  Google Scholar 

  • Evgenidou, E. N., Konstantinou, I. K., & Lambropoulou, D. A. (2015). Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewater: A review. Science of the Total Environment, 505, 905–926.

    Article  CAS  Google Scholar 

  • Fent, K., Weston, A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159.

    Article  CAS  PubMed  Google Scholar 

  • Fong, P. P., Bury, T. B., & Dworkin-Brodsky, A. D. (2015). The antidepressants venlafaxine (“Effexor”) and fluoxetine (“Prozac”) produce different effects on locomotion in two species of marine snail, the oyster drill (Urosalpinx cinerea) and the starsnail (Lithopomaamericanum). Marine Environmental Research, 103, 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Fu, W., Chaiboonchoe, A., Khraiwesh, B., Nelson, D. R., AlKhairy, D., & Mystikou, A. (2016). Algal cell factories: Approaches, applications, and potentials. Marine Drugs, 14(225), 1–19.

    Google Scholar 

  • Gadd, G. M., & Pan, X. (2016). Biomineralization, bioremediation and biorecovery of toxic metals and radionuclides. Geomicrobiology Journal, 33, 175–178.

    Article  CAS  Google Scholar 

  • Gaylarde, C. C., Bellinaso, M. L., & Manfilo, G. P. (2005). Biorremediação - aspetosbiológicos e técnicos da biorremediação de xenobióticos. Biotecnologia Ciencia e Desenvolvimento, 34, 36–43.

    Google Scholar 

  • Gerbersdorf, S. U., Cimatoribus, C., Class, H., Engesser, K. H., Helbich, S., & Hollert, H. (2015). Anthropogenic trace compounds (ATCs) in aquatic habitats-research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. Environment International, 79, 85–105.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie, I. M. M., & Philip, J. C. (2013). Bioremediation, an environmental remediation technology for the bioeconomy. Trends in Biotechnology, 31, 329–332.

    Article  CAS  PubMed  Google Scholar 

  • Gottschall, N., Topp, E., Metcalfe, C., Edwards, M., Payne, M., & Kleywegt, S. (2012). Pharmaceutical and personal care products in groundwater, subsurface drainage, soil, and wheat grain, following a high single application of municipal biosolids to a field. Chemosphere, 87(2), 194–203.

    Article  CAS  PubMed  Google Scholar 

  • Günther, M. (2017). Fungal glycolipids as biosurfactants. Current Biotechnology, 5, 1–13.

    Google Scholar 

  • Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews. Microbiology, 9, 177–192.

    Article  CAS  PubMed  Google Scholar 

  • Hata, T., Kawai, S., Okamura, H., & Nishida, T. (2010). Removal of diclofenac and mefenamic acid by the white rot fungus Phanerochaetesordida YK-624 and identification of their metabolites after fungal transformation. Biodegradation, 21(5), 681–689.

    Article  CAS  PubMed  Google Scholar 

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., & Dennison, W. C. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8, 3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann, U., & Schlosser, D. (2016). Biochemical and physicochemical processes contributing to the removal of endocrine-disrupting chemicals and pharmaceuticals by the aquatic Ascomycete Phoma sp. UHH 5-1-03. Applied Microbiology and Biotechnology, 100, 2381–2399.

    Article  CAS  PubMed  Google Scholar 

  • Jagadevan, S., Jayamurthy, M., Dobson, P., & Thompson, I. P. (2012). A novel hybrid nano zerovalent iron initiated oxidation-Biological degradation approach for remediation of recalcitrant waste metal working fluids. Water Research, 46, 2395–2404.

    Article  CAS  PubMed  Google Scholar 

  • Jebapriya, G. R., & Gnanadoss, J. J. (2013). Bioremediation of textile dye using white-rot fungi: A review. International Journal of Current Research and Review, 5, 1–13.

    Google Scholar 

  • Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sanchez, R., Ventura, F., & Petrovic, M. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165–1176.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, B., Li, A., Cui, D., Cai, R., Ma, F., & Wang, Y. (2014). Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Applied Microbiology and Biotechnology, 98(10), 4671–4681.

    Article  CAS  PubMed  Google Scholar 

  • Jiu-Qiang, X., Mayur, B. K., & Byong-Hun, J. (2017). Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium. Environmental Pollution, 226, 486–493.

    Article  CAS  Google Scholar 

  • Joss, A., Andersen, H., Ternes, T. A., Richle, P. R., & Siegrist, H. (2004). Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: Consequences for plant optimization. Environmental Science & Technology, 38, 3047–3055.

    Article  CAS  Google Scholar 

  • Kartheek, B. R., Maheswaran, R., Kumar, G., & Banu, G. S. (2011). Biodegradation of pharmaceutical wastes using different microbial strains. International Journal of Pharmaceutical and Biological Archive, 2, 1401–1404.

    Google Scholar 

  • Kaur, J., & Maddela, N. R. (2021). Microbial bioremediation: A cutting-edge technology for xenobiotic removal. In N. R. Maddela, L. C. García Cruzatty, & S. Chakraborty (Eds.), Advances in the domain of environmental biotechnology. Environmental and microbial biotechnology. Springer. https://doi.org/10.1007/978-981-15-8999-7_16

    Chapter  Google Scholar 

  • Khunjar, W., Mackintosh, S., Skotnicka-Pitak, J., Baik, S., Aga, D., & Love, N. (2011). Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17a-ethinylestradiol and trimethoprim. Environmental Science & Technology, 45(8), 3605–3612.

    Article  CAS  Google Scholar 

  • Kinney, C. A., Furlong, E. T., Werner, S. L., & Cahill, J. D. (2006). Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environmental Toxicology and Chemistry, 25, 317–326.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, P., Cannon, P., Minter, D., & Stalpers, J. (2008). Dictionary of the fungi. CABI. https://doi.org/10.1079/9780851998268.0000

    Book  Google Scholar 

  • Kraigher, B., Kosjek, T., Heath, E., Kompare, B., & Mandic-Mulec, I. (2008). Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Research, 42, 4578–4588.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, V. J., Miles-Richardson, S., Pierensa, S. L., & Giesy, J. P. (1998). Reproductive impairment and induction of alkaline-labile phosphate, a biomarker of estrogen exposure, in fathead minnows (Pimephalespromelas) exposed to waterborne 17β-estradiol. Aquatic Toxicology, 40, 335–360.

    Article  CAS  Google Scholar 

  • Kumar, V., Thakur, I. S., & Shah, M. P. (2020). Bioremediation approaches for treatment of pulp and paper industry wastewater: Recent advances and challenges. In M. P. Shah (Ed.), Microbial bioremediation & biodegradation. Springer Nature. https://doi.org/10.1007/978-981-15-1812-6-1

    Chapter  Google Scholar 

  • Larcher, S., & Yargeau, V. (2011). Biodegradation of sulfamethoxazole by individual and mixed bacteria. Applied Microbiology and Biotechnology, 91, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, C., Yu, Z. H., Flick, R., & Passeport, E. (2019). Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Science of the Total Environment, 695, 133772.

    Article  CAS  Google Scholar 

  • Lin, K. D., & Gan, J. (2011). Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere, 83, 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Lin, A. Y., Plumlee, M. H., & Reinhard, M. (2006). Natural attenuation of pharmaceuticals and alkylphenol polyethoxylate metabolites during river transport: Photo-chemical and biological transformation. Environmental Toxicology and Chemistry, 25, 1458–1464.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Ying, G. G., Tao, R., Zhao, J. L., Yang, J. F., & Zhao, L. F. (2009). Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental Pollution, 157, 1636–1642.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Hu, J., Xu, B., He, J., Gao, P., Liu, K., Xue, G., & Ognier, S. (2013). Isolation and identification of an iopromide-degrading strain and its application in an A2/O system. Bioresource Technology, 134, 36–42.

    Article  CAS  PubMed  Google Scholar 

  • Maddela, N. R., & Scalvenzi, L. (2018). Petroleum degradation: Promising biotechnological tools for bioremediation. In Z. Mansoor (Ed.), Recent insights in petroleum science and engineering. InTech Open. https://doi.org/10.5772/intechopen.70109

    Chapter  Google Scholar 

  • Maddela, N. R., Reyes, J. J. M., Viafara, D., & Gooty, J. M. (2015a). Biosorption of copper (II) by microorganisms isolated from crude oil contaminated soil. Soil and Sediment Contamination: An International Journal, 24(8), 898–908.

    Article  CAS  Google Scholar 

  • Maddela, N. R., Scalvenzi, L., Pérez, M., Montero, C., & Gooty, J. M. (2015b). Efficiency of indigenous filamentous fungi for biodegradation of petroleum hydrocarbons in medium and soil: Laboratory study from Ecuador. Bulletin of Environmental Contamination and Toxicology, 95(3), 385–394.

    Article  CAS  PubMed  Google Scholar 

  • Mamta Shashi, B., Mohit, S. R., Shaon, R., Halis, S., & Sanjeev, K. P. (2020). Algae and bacteria-driven technologies for pharmaceutical remediation in wastewater. Chapter 15 Algae-and bacteria-driven technologies. In Removal of toxic pollutants through microbiological and tertiary treatment (pp. 373–408). Elsevier.

    Chapter  Google Scholar 

  • Mashi, B. H. (2013). Biorremediation: Issues and challenges. JORIND, 11, 1596–8303.

    Google Scholar 

  • McClellan, K., & Halden, R. U. (2010). Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Research, 44, 658–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meade, M. J., Rebecca, L. W., & Terrence, M. C. (2001). Soil bacteria Pseudomonas putida and Alkaligenesxylosodans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiology Letters, 204, 45–58.

    Article  CAS  PubMed  Google Scholar 

  • Miao, X. S., Yang, J. J., & Metcalfe, C. D. (2005). Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environmental Science & Technology, 39, 7469–7475.

    Article  CAS  Google Scholar 

  • Mikeskova, H., Novotny, C., & Svobodova, K. (2012). Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Applied Microbiology and Biotechnology, 95, 861–870.

    Article  CAS  PubMed  Google Scholar 

  • Misal, S. A., Lingojwar, D. P., Shinde, R. M., & Gawai, K. R. (2011). Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Process Biochemistry, 46, 1264–1269.

    Article  CAS  Google Scholar 

  • Mishra, A., & Anushree, M. (2014). Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresource Technology, 171, 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, E. M. A., Azza, M., El-Aty, A., Mohamed, I. B., & Rizka, K. A. (2018). Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicology and Environmental Safety, 151, 144–152.

    Article  CAS  Google Scholar 

  • Monteiro, S. C., & Boxall, A. B. A. (2010). Occurrence and fate of human pharmaceuticals in the environment. Reviews of Environmental Contamination and Toxicology, 202(1), 53–154.

    CAS  PubMed  Google Scholar 

  • Morel, M., Meux, E., Mathieu, Y., Thuillier, A., Chibani, K., & Harvengi, L. (2013). Xenomic networks variability and adaptation traits in wood decaying fungi. Microbial Biotechnology, 6, 248–263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muhammad, B. A., Faisal, I., Singh, H. L., William, E. P., & Long, D. N. (2017). Degradation of pharmaceuticals and personal care products by white-rot fungi-A critical review. Current Pollution Reports, 3, 88–103.

    Article  CAS  Google Scholar 

  • Murdoch, R. W., & Hay, A. G. (2005). Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Applied and Environmental Microbiology, 71(10), 6121–6125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, L. N., Hai, F. I., Yang, S., Kang, J., Leusch, F. D. L., & Roddick, F. (2013). Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi. Bioresource Technology, 148, 234–241.

    Article  CAS  PubMed  Google Scholar 

  • Niemuth, N. J., Jordan, R., & Crago, J. (2015). Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environmental Toxicology and Chemistry, 34, 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Nilambari, D., & Dhanashree, T. (2014). Isolation and 16s rRNA sequence analysis of beneficial microbes isolated from pharmaceutical effluent. Bionano Frontier, 7(2), 243–248.

    Google Scholar 

  • Osundeko, O., Dean, A. P., Davies, H., & Pittman, J. K. (2014). Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant & Cell Physiology, 55, 1848–1857.

    Article  CAS  Google Scholar 

  • Pan, B., Ning, P., & Xing, B. S. (2009). Part V-sorption of pharmaceuticals and personal care products. Environmental Science and Pollution Research, 16, 106–116.

    Article  CAS  PubMed  Google Scholar 

  • Paredes, L., Fernandez-Fontaina, E., Lema, J. M., Omil, F., & Carballa, M. (2016). Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems. Science of the Total Environment, 551–552, 640–648.

    Article  CAS  Google Scholar 

  • Popa, C., Favier, L., Dinica, R., Semrany, S., Djelal, H., Amrane, A., & Bahrim, G. (2014). Potential of newly isolated wild Streptomyces strains as agents for the biodegradation of a recalcitrant pharmaceutical, carbamazepine. Environmental Technology, 35(24), 3082–3091.

    Article  CAS  PubMed  Google Scholar 

  • Quintana, J. B., Weiss, S., & Reemtsma, T. (2005). Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Research, 39, 2654–2664.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan, B., Maddela, N. R., Venkateswarlu, K., & Megharaj, M. (2020). Organic farming: Does it contribute to contaminant-free produce and ensure food safety? Science of the Total Environment, 769, 145079.

    Article  CAS  Google Scholar 

  • Rana, R. S., Singh, P., Kandari, V., Singh, R., Dobhal, R., & Gupta, S. (2017). A review on characterization and bioremediation of pharmaceutical industries’ wastewater: An Indian perspective. Applied Water Science, 7, 1–12.

    Article  CAS  Google Scholar 

  • Reis, P. J., Reis, A. C., Ricken, B., Kolvenbach, B. A., Manaia, C. M., & Corvini, P. F. (2014). Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. Journal of Hazardous Materials, 280, 741–749.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, J., Kumar, A., Du, J., Hepplewhite, C., Ellis, D. J., & Christy, A. G. (2016). Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of the Total Environment, 541(16), 25–1637.

    Google Scholar 

  • Rodarte-Morales, I., Feijoo, G., Moreira, M. T., & Lema, J. (2011). Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World Journal of Microbiology and Biotechnology, 27, 1839–1846.

    Article  Google Scholar 

  • Rodarte-Morales, A. I., Feijoo, G., Moreira, M. T., & Lema, J. M. (2012). Biotransformation of three pharmaceutical active compounds by the fungus Phanerochaete chrysosporium in a fed batch stirred reactor under air and oxygen supply. Biodegradation, 23, 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Roh, H., Subramanya, N., Zhao, F., Yu, C. P., Sandt, J., & Chu, K. H. (2009). Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere, 77(8), 1084–1089.

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., & Brusca, R. C. (2015). Correction: A higher level classification of all living organisms. PLoS One, 10, e0130114. https://doi.org/10.1371/journal.pone.0130114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salima, A., Ouled-Haddar, H., Mohamed, S., Chérifa, B., & Farida, B. (2017). Biological removal of the mixed pharmaceuticals: Diclofenac, ibuprofen, and sulfamethoxazole using a bacterial consortium. Iranian Journal of Biotechnology, 15(2), 135–142.

    Article  Google Scholar 

  • Santosa, I. J., Grossmana, M. J., Sartorattob, A., Ponezib, A. N., & Durranta, L. R. (2012). Degradation of the recalcitrant pharmaceuticals carbamazepine and 17a-ethinylestradiol by ligninolytic fungi. Chemical Engineer, 27, 169–174.

    Google Scholar 

  • Schmit, J. P., & Mueller, G. M. (2007). An estimate of the lower limit of global fungal diversity. Biodiversity and Conservation, 16, 99–111.

    Article  Google Scholar 

  • Sergio, S., Enrique, T., Roi, M., & Julio, A. (2016). Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. Journal of Hazardous Materials, 320, 315–325.

    Article  CAS  Google Scholar 

  • Souza, E. C., Vessoni-Penna, T. C., & de Souza, O. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: An overview. International Biodeterioration and Biodegradation, 89, 88–94.

    Article  CAS  Google Scholar 

  • Spina, F., Anastasi, A., Prigione, V., Tigini, V., & Varese, G. C. (2012). Biological treatment of industrial wastewaters: A fungal approach. Chemical Engineering Transactions, 27, 175–180.

    Google Scholar 

  • Subashchandrabose, S. R., Ramakrishnam, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. R. (2013). Mixotrophic Cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 51, 59–72.

    Article  CAS  PubMed  Google Scholar 

  • Suresh, K. K., Dahms, H. U., Won, E. J., Lee, J. S., & Shin, K. H. (2015). Microalgae-A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 113, 329–352.

    Article  CAS  Google Scholar 

  • Sze, P. A. (1998). Biology of the algae (3rd ed.). WCB; McGraw-Hill.

    Google Scholar 

  • Ternes, T. A., Herrmann, N., Bonerz, M., Knacker, T., Siegrist, H., & Joss, A. (2004). A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Research, 38, 4075–4084.

    Article  CAS  PubMed  Google Scholar 

  • Tewari, S., Jindal, R., Kho, Y. L., Eo, S., & Choi, K. (2013). Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks. Chemosphere, 91, 697–704.

    Article  CAS  PubMed  Google Scholar 

  • Tiehm, A., Schmidt, N., Stieber, M., Sacher, F., Wolf, L., & Hoetzl, H. (2011). Biodegradation of pharmaceutical compounds and their occurrence in the Jordan valley. Water Resources Management, 25(4), 1195–1203.

    Article  Google Scholar 

  • Vasiliadou, I. A., Molina, R., Martínez, F., & Melero, J. A. (2013). Biological removal of pharmaceutical and personal care products by a mixed microbial culture: Sorption, desorption and biodegradation. Biochemical Engineering Journal, 81, 108–119.

    Article  CAS  Google Scholar 

  • Vasiliadou, I. A., Sanchez-Vazquez, R., Molina, R., Martínez, F., Melero, J. A., & Bautista, L. F. (2016). Morales Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. Journal of Environmental Management, 180, 228–237.

    Article  CAS  PubMed  Google Scholar 

  • Velagaleti, R. (1997). Behavior of pharmaceutical drugs (human and animal health) in the environment. Drug Information Journal, 31, 715–722.

    Article  Google Scholar 

  • Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620–640.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Wang, C., Li, A., & Gao, J. (2015). Biodegradation of pentachloronitrobenzene by Arthrobacter nicotianae DH19. Letters in Applied Microbiology, 61(4), 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Wu, M., Xiang, J., Que, C., Chen, F., & Xu, G. (2015). Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China. Chemosphere, 138, 486–493.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, J. Q., Kurade, M. B., & Jeon, B. H. (2017). Biodegradation of levofloxacin by an acclimated freshwater alga Chlorella vulgaris. Chemical Engineering Journal, 313, 1251–1257.

    Article  CAS  Google Scholar 

  • Xiong, J. Q., Kurade, M. B., & Jeon, B. H. (2018). Can microalgae remove pharmaceutical contaminants from water? Trends in Biotechnology, 36(1), 30–44.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. Y., & Toor, G. S. (2015). Contaminants in the Urban environment: Pharmaceuticals and personal care products (PPCPs)-Part 21 (p. SL420). Department of Soil and Water Sciences, Center for Landscape Conservation and Ecology; UF/IFAS Extension. http://edis.ifas.ufl.edu/ss633

    Google Scholar 

  • Yu, Y., Liu, Y., & Wu, L. S. (2013). Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. Environmental Science and Pollution Research, 20, 4261–4267.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D. (2013). Surfactant controlled bacterial interfacial behaviors of PAHs and its mechanisms. Ph.D. dissertation. Zhejiang University (in Chinese).

    Google Scholar 

  • Zhang, D. (2020). The role of microorganisms in the removal of pharmaceutical and personal care products. In M. N. Vara Prasad, M. Vithanage, & K. Atya (Eds.), Pharmaceuticals and personal care products: Waste management and treatment technology (pp. 341–382). Elsevier.

    Google Scholar 

  • Zhang, D., & Zhu, L. Z. (2012). Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytocaPYR-1. Environmental Pollution, 164, 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Zhu, L. Z., & Li, F. (2013a). Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain. Bioresource Technology, 142, 454–461.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Hu, J., Zhu, R., Zhou, Q., & Chen, J. (2013b). Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Applied Microbiology and Biotechnology, 97(8), 3687–3698.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Xie, J., Liu, M., Tian, Z., He, Z., & Van Nostrand, J. D. (2013c). Microbial community functional structure in response to antibiotics in pharmaceutical wastewater treatment systems. Water Research, 47, 6298–6308.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Lu, L., Zhao, H. T., Jin, M. Q., Lü, T., & Lin, J. (2018). Application of Klebsiella oxytoca biomass in the biosorptive treatment of PAH-bearing wastewater: Effect of PAH hydrophobicity and implications for prediction. Water, 10, 675. https://doi.org/10.3390/w10060675

    Article  CAS  Google Scholar 

  • Zhou, N. A., Lutovsky, A. C., Andaker, G. L., Ferguson, J. F., & Gough, H. L. (2014). Kinetics modeling predicts bioaugmentation with Sphingomonad cultures as a viable technology for enhanced pharmaceutical and personal care products removal during wastewater treatment. Bioresource Technology, 166, 158–167.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, S., Huo, S., & Feng, P. (2019). Developing designer microalgal consortia: A suitable approach to sustainable wastewater treatment. In Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 569–598). Springer.

    Chapter  Google Scholar 

  • Zhuang, Y., Ahn, S., Seyfferth, A. L., Masue-Slowey, Y., Fendorf, S., & Luthy, R. G. (2011). Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environmental Science & Technology, 45(11), 4896–4903.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there are no conflicts of interests to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasulu, M. et al. (2021). Microbial Remediation of Pharmaceuticals and Personal Care Products. In: Maddela, N.R., García, L.C. (eds) Innovations in Biotechnology for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-80108-3_14

Download citation

Publish with us

Policies and ethics