Skip to main content

Teakwood Chemistry and Natural Durability

  • Chapter
  • First Online:
The Teak Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The intraspecific variability of teakwood generates different responses with industrialists in the timber and wood business. Several quality parameters are commonly employed when evaluating teakwood, although these factors are very intriguing, they do not account for all aspects of wood quality. In the present chapter, we review the normalized methods of evaluating technological properties of teakwood and also include chemical composition as an important criterion. The latter has been found to play a key role as it impacts the most important technological properties such as color and natural durability at different stages of teakwood production from plantation to usage. Therefore, it is important to include chemical composition of teak as a factor in determining its quality, and non-destructive tools like NIR (Near-infrared) spectroscopy for wood phenotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves AMM, Simões RFS, Santos CA, Potts BM, Rodrigues J, Schwanninger M (2012) Determination of Eucalyptus globulus wood extractives content by near infrared-based partial least squares regression models: comparison between extraction procedures. J Near Infrared Spectrosc 20:275–285. https://doi.org/10.1255/jnirs.987

    Article  CAS  Google Scholar 

  • Amusant N, Boutahar N, Derkyi NSA, Chaix G (2009) Development of a method to predict natural durability of teak by Fourier transform near-infrared spectroscopy. In: Paper presented at the Knowledge-based management of tropical rainforest, Cayenne, French Guiana, 22–28 November

    Google Scholar 

  • Anda RR, Koch G, Richter H-G, Talavera FJF, Guzmán JAS, Satyanarayana KG (2019) Formation of heartwood, chemical composition of extractives and natural durability of plantation-grown teak wood from Mexico Holzforschung 73. https://orcid.org/0000-0003-1137-4238

  • Antwi-Boasiako C, Baidoo AH (2010) Accelerated field durability assessment of two non-durable timbers (Ceiba pentandra (L.) Gaertn. and Celtis milbraedii Engl.) impregnated with natural and inorganic preservatives. J Sci Technol 30:18–29

    Google Scholar 

  • Asamoah A, Antwi-Boasiako (2007) Treatment of selected lesser used timber species against Subterranean Termites using heartwood extracts from Teak (Tectona grandis) and Dahoma (Pitptadeniastrum africanum). In: Paper presented at the IRG, Jackson Lake Lodge, Wyoming, USA

    Google Scholar 

  • Asamoah A, Frimpong-Mensah K, Antwi-Boasiako C (2011) Efficacy of Tectona grandis (Teak) and Distemonanthus benthamianus (Bonsamdua) water extractives on the durability of five selected ghanaian less used timber species. Pak J Chem 1:28–31

    Google Scholar 

  • Babula P, Adam V, Havel L, Kizek (2009) Noteworthy secondary metabolites naphthoquinones - their occurrence, pharmacological properties and analysis. Curr Pharm Anal 5:47–68

    Google Scholar 

  • Ball JB, Pandey D, Hirai S (2000) Global overview of teak plantations. In: Enters T, Nair CTS (eds) Site, technology and productivity of teak plantations, vol 24, FORSPA Publication, Bangkok, pp 11–33

    Google Scholar 

  • Baillères H, Durand P (2000) Non-destructive techniques for wood quality assessment of plantation-grown teak. Bois For Trop 263:17–29

    Google Scholar 

  • Behaghel I (1999) État des plantations de teck (Tectona grandis L. f.) dans le monde. Bois For Trop 262:5–18

    Google Scholar 

  • Bhat KM, Florence MEJ (2003) Natural Decay resistance of juvenil teak wood grown in high input plantations. Holzforschung 57:453–455

    Article  CAS  Google Scholar 

  • Bhat KM, Indira EP (2005) Heritability and genetic gains in wood quality attributes of clonal teak (Tectona grandis L. F.). J Timb Dev Assoc India 51:30–34

    Google Scholar 

  • Bhat KM, Ma HO (2004) Teak growers unite! ITTO Trop For Update 14(1):3–5

    Google Scholar 

  • Bhat IUH, Khalil HPSA, Shuib NS, Noor AM (2010) Antifungal activity of heartwood extracts and their constituens from cultivated Tectona grandis against Phanerochaete chrysosporium. Wood Res 55:59–66

    CAS  Google Scholar 

  • Bhuyan R, Saikia C (2005) Isolation of color components from native dye-bearing plants in northeastern India. Bioresour Technol 96:363–372

    Google Scholar 

  • Blanchette RA (1984) Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol 48:647–653

    Article  CAS  Google Scholar 

  • Brocco VF, Paes JB, Da Costa LGa, Kirker GT, Brazolin Sr (2020) Wood color changes and termicidal properties of teak heartwood extract used as a wood preservative. Holzforschung 74:233–245. https://doi.org/10.1515/hf-2019-0138

  • Chaix G et al (2008) Rapid prediction of teak wood natural durability using near-infrared spectroscopy. In: Bhat KM, Balasundaran M, Bhat KV, Muralidharan EM, Thulasidas PK (eds) Proceessing and marketing of teak wood products of planted forests: Proceedings of the Regional Workshop, Kerala Forest Research Institute, Peechi, India. Peechi: KFRI, 25–28 September 2007, pp 264–266

    Google Scholar 

  • Chen H, Ferrari C, Angiuli M, Yao J, Raspi C, Bramanti E (2010) Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr Polym 82:772–778. https://doi.org/10.1016/j.carbpol.2010.05.052

    Article  CAS  Google Scholar 

  • Da Costa EWB, Rudman P, Gay FJ (1958) Investigations on the durability of Tectona grandis. Empire For Rev 37:291–298

    Google Scholar 

  • Damasceno CSB, de Oliveira LcF, Szabo EM, Souza AnM, Dias JFG, Miguel MD, Miguel OlG (2017) Chemical composition, antioxidant and biological activity of Ocotea bicolor Vattimo-Gil (Lauraceae) essential oil. Braz J Pharm Sci 53:8

    Google Scholar 

  • Darmawan W, Nandika D, Sari RK, Sitompul A, Rahayu I, Gardner D (2015) Juvenile and mature wood characteristics of short and long rotation teak in Java. IAWA J 36:429–443. https://doi.org/10.1163/22941932-20150112

    Article  Google Scholar 

  • Datta SK, Kumar A (1987) Histochemical studies of the transition from sapwood to heartwood in Tectona grandis. IAWA Bull 8(4):363–368

    Google Scholar 

  • Derkyi NSA, Bailleres H, Chaix G, Thevenon MF, Oteng-Amoako AA, Adu-Bredu S (2009) Coulour variation in teak (Tectona grandis) wood from plantations across the ecological zones of Ghana Ghana. J For 25:40–49

    Google Scholar 

  • Djati ID, Tauchi T, Kubo M, Terauchi F (2015) Mechanical properties and characteristics of young teak for making products. Bull JSSD 62:25–34

    Google Scholar 

  • FAO (2009) The future of teak and the high-grade tropical hardwood sector: planted forests and trees working paper FP/44E

    Google Scholar 

  • Febrianto F, Syafii W, Barata dA (2000) Natural durability of teak wood (Tectona grandis L.f) at various age classes. J Teknol Hasil Hutan, Fakultas Kehutanan IPB XIII:25–33

    Google Scholar 

  • Fernández--Sólis D, Berrocal A, Moya Rg (2018) Heartwood formation and prediction of heartwood parameters in Tectona grandis L.f. trees growing in forest plantations in Costa Rica. Bois For Trop 335:25–37

    Google Scholar 

  • Gašparík M, Gaff M, Kačík Fe, Sikora A (2019) Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. BioResources 14:2667–2683

    Google Scholar 

  • Gierlinger N, Jacques D, Grabner M, Wimmer R, Schwanninger M, Rozenberg P, Paques LE (2004) Color of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees 18:102–108

    Article  Google Scholar 

  • Goswami DV, Nirmal SA, Patil MJ, Dighe NS, Laware RB, Pattan SR (2009) An overview of Tectona grandis: chemistry and pharmacological profile. Pharmacogn Rev 3:181–185

    Google Scholar 

  • Grace KJ, Yamamoto RT (1998) Natural resistance of Alaska-cedar redwood, and teak to Formosan subterranean termites. For Prod J 44:41–45

    Google Scholar 

  • Hassan B, Mankowski ME, Kirker G, Ahmed S, Bishell A (2019) Ex-situ performance of extracts from naturally durable heartwood species and their potential as wood preservatives. Eur J Wood Wood Prod 77:869–878

    Article  CAS  Google Scholar 

  • Haupt M, Leithoff H, Meier D, Puls J, Richter HG, Faix O (2003) Heartwood extractives and natural durability of plantation-grown teakwood (Tectona grandis L.) - a case study Holz als Roh- und Werkst 61:473–474

    Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Spinger-Verlag, Berlin-Germany

    Book  Google Scholar 

  • Irbe I, Noldt G, Grinfelds U, Verovkins A, Jansons A, Koch G (2012) Genetic variation of Norway spruce clones regarding their natural durability, physical and chemical properties. Adv Biosci Biotechnol 3:1104–1112. https://doi.org/10.4236/abb.2012.38135

  • Islam A, Begum S (2011) Distribution of starch, lipid and nuclei in xylem and phloem of Tectona grandis Linn. J Biosci 19:29–35

    Google Scholar 

  • Ismayati M, Nakagawa-Izumi A, Kamaluddin NN, Ohi H (2016) Toxicity and feeding deterrent effect of 2-methylanthraquinone from the wood extractives of Tectona grandis on the Subterranean Termites Coptotermes formosanus and Reticulitermes speratus. Insects 7. https://doi.org/10.3390/insects7040063

  • Izekor DN, Fuwape JA (2011) Performance of Teak (Tectona grandis L.F) wood on exposure to outdoor weather conditions. J Appl Sci Environ Manage 15:217–222

    Google Scholar 

  • Jha KK (2016) What should be the rotation age and harvest management in teak. Indian For 142:309–316

    Google Scholar 

  • Josue J, Imiyabir Z (2011) Anatomical features, quality and mechanical properties of 15-years-old Tectona grandis (TEAK) planted in Sabah: ITTO project on improving utilization and value adding of plantation timbers from sustainable sources in Malaysia project no. PD 306/04, Malaysia

    Google Scholar 

  • Kampe A, Magel E (2013) New insights into heartwood and heartwood formation. cellular aspects of wood formation. In: Fromm J (ed) Plant cell monographs, vol 20, pp 71–95

    Google Scholar 

  • Kaosa-ard A (1989) Teak (Tectona grandis Linn. f) its natural distribution and related factors. Nat Hist Bull Siam Soc 29:55–74

    Google Scholar 

  • Keogh R (2001) New horizons for teak (Tectona grandis Linn. F.) plantations: the consortium support model (CSM) approach of teak 2000. In: Paper presented at the Third Regional Seminar on Teak, Potentials and opportunities in marketing and trade of plantation teak: challenge for the new millenium, Yogyakarta

    Google Scholar 

  • Keogh RM (2002) TEAK 21: a support mechanism for high-grade tropical hardwoods. Int For Rev 4:239–244

    Google Scholar 

  • Keogh R (2009) The future of teak and the high-grade tropical hardwood sector: planted forests and trees working paper FP/44E

    Google Scholar 

  • Khan RM, Mlungwana SM (1999) 5-Hydroxylapachol: a cytotoxic agent from Tectona grandis. Phytochemistry 50:439–442

    Google Scholar 

  • Kokutse AD, Baillères H, Stokes A, Kokou K (2004) Proportion and quality of heartwood in Togolese teak (Tectona grandis L.f.). For Ecol Manage 189:37–48

    Google Scholar 

  • Kokutse AD, Stokes A, Baillères H, Kokou K, Baudasse C (2006) Decay resistance of Togolese teak (Tectona grandis L.f) heartwood and relationship with color Trees 20:219–223. https://doi.org/10.1007/s00468-005-0028-0

  • Kokutse AD, Brancheriau L, Chaix G (2010) Rapid prediction of shrinkage and fibre saturation point on teak (Tectona grandis) wood based on near-infrared spectroscopy. Ann For Sci 67:403. https://doi.org/10.1051/forest/2009123

  • Kollert W, Cherubini L (2012) Teak resources and market assessment 2010. FAO Planted Forests and Trees Working Paper FP/47/E

    Google Scholar 

  • Kollman FFP, Cote WA (1968) Principles of wood science and technology, vol 1. Springer-Verlag, New York

    Book  Google Scholar 

  • Lourenço A, Neiva DM, Gominho J, Marques AV, Pereira H (2015) Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Sci Technol 49:159–175

    Google Scholar 

  • Lukmandaru G (2011) Variability in the natural termite resistance of plantation teak wood and its relations with wood extractive content and color properties. J For Re 8:17–31. https://doi.org/10.20886/ijfr.2011.8.1.17-31

  • Lukmandaru G (2013a) Antifungal activities of certain components of teak wood extractives. J Ilmu dan Teknologi Kayu Tropis 11:11–18

    Google Scholar 

  • Lukmandaru G (2013b) The natural termite resistance of teak wood grown in community forest. J Ilmu dan Teknologi Kayu Tropis 11:131–139

    Google Scholar 

  • Lukmandaru G (2015a) Chemical characteristics of teak wood attacked by Neotermes tectonae. BioResources 10:2094–2102

    Article  Google Scholar 

  • Lukmandaru G (2015b) Quinones distribution of teak wood grown in community forest. J Ilmu Teknol Kayu Tropis 13:193–204

    Google Scholar 

  • Lukmandaru G, Takahashi K (2008) Variation in the natural termite resistance of teak (Tectona grandis Linn fil.) wood as a function of tree age. Ann For Sci 65:708. https://doi.org/10.1051/forest:2008047

  • Lukmandaru G, Takahashi K (2009) Radial distribution of quinones in plantation teak (Tectona grandis L.f.). Ann For Sci 66:605

    Google Scholar 

  • Lukmandaru G, Ashitani T, Takahashi K (2009) Color and chemical characterization of partially black-streaked heart- wood in teak (Tectona grandis). J For Res 20:377−380. https://doi.org/10.1007/s11676-009-0064-5

  • Marsoem SN, Prasetyo VE, Sulistyo J, Sudaryono LG (2018) Studi Mutu Kayu Jati Di Hutan Rakyat Gunungkidul III. Sifat Fisika Kayu Jurnal Ilmu Kehutanan 8:75–88

    Google Scholar 

  • Martawijaya A, Kartasujana I, Kadir K, Prawira SA (2005) Indonesian wood atlas. Part I (In Indonesian). Bogor (ID). Departemen Kehutanan, Bogor, Indonesia

    Google Scholar 

  • McDonald AG, Donaldson LA (2001) Wood, Constituents of. In: Jürgen Buschow KH, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology. Elsevier edn. Elsevier, pp 9612–9615. https://doi.org/10.1016/B0-08-043152-6/01739-3

  • Miranda I, Sousa V, Pereira H (2011) Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. J Wood Sci 57:171–178

    Google Scholar 

  • Montero RS, Moya R, Berrocal A, Trejos GG, Foglia RC (2015) General, physical and mechanical properties, termites resistance and drying defects of lumber of Tectona grandis from plantations of different climatic and sites fertility condition. J Indian Acad Wood Sci 12:63–73

    Google Scholar 

  • Moya R, Berrocal A (2010) Wood color variation in sapwood and heartwood of young trees of Tectona grandis and its relationship with plantation characteristics, site, and decay resistance. Ann For Sci 67:109

    Google Scholar 

  • Moya R, Bond B, Quesada H (2014) A review of heartwood properties of Tectona grandis trees from fast-growth plantations. Wood Sci Technol 48:411–433. https://doi.org/10.1007/s00226-014-0618-3

    Article  CAS  Google Scholar 

  • Moya Rg, Calvo-Alvarado J (2012) Variation of wood color parameters of Tectona grandis and its relationship with physical environmental factors. Ann For Sci 69:947–959

    Google Scholar 

  • Nakata H, Isoda K (2005) Is teak improving? ITTO Tropical Forest Update 15(4):17–19

    Google Scholar 

  • Nascimento MS, Santana ALBD, Maranhão CA, Oliveira LS, Bieber L (2013) Phenolic extractives and natural resistance of wood. In: Intech L (ed) Biodegradation - life of science. Licensee Intech, pp 349–370. https://doi.org/10.5772/56358

  • Niamké BF et al. (2012a) Decay resistance attributes of teak (Tectona grandis L. f.) wood: comparison of the fungicidal activities of quinones. In: Paper presented at the 42th annual meeting: The International Research Group on Wood Protection New Zealand, Queenstown, 8–12 May 2011

    Google Scholar 

  • Niamké FB et al (2010) Radial distribution of non-structural carbohydrates in Malaysian teak. Int J Biol Chem Sci 4:710–720

    Google Scholar 

  • Niamké BF et al (2011) Decay resistance attributes of teak (Tectona grandis L. f.) wood: comparison of the fungicidal activities of quinones. In: The International Research Group on Wood Protection, Queenstown, Nouvelle-Zélande

    Google Scholar 

  • Niamké FB et al (2012b) 4′,5′-Dihydroxy-epiisocatalponol, a new naphthoquinone from Tectona grandis L. f. heartwood, and fungicidal activity. Int Biodeter Biodegr 74:93–98. https://doi.org/10.1016/j.ibiod.2012.03.010

    Article  CAS  Google Scholar 

  • Niamké FB et al (2014) Rapid prediction of phenolic compounds as chemical markers for the natural durability of teak (Tectona grandis Linn f.) heartwood by near infrared spectroscopy. J Near Infrared Spectrosc 22:35–43

    Google Scholar 

  • Nobuchi T, Sirirat J, Masaharu S (1996) Seasonal changes of wood formation and some characteristics of heartwood formation in teak (Tectona grandis L.) plantation. Kasetsart J (Nat Sci) 30:254–263

    Google Scholar 

  • Oliveira WCD, Pereira BrLsC, Goes LSfDA, Quintilhan MT, Oliveira AC, Môra Rm (2019) Deterioration of teak wood in accelerated decay test Floresta e Ambiente 26:9. https://doi.org/10.1590/2179-8087.036017

  • Pandey D, Brown C (2000) Le teck dans le monde Unasylva 201 51:3–13

    Google Scholar 

  • Peng L, Kawagoe Y, Hogan P, Delmer D (2002) Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science 295:147–150. https://doi.org/10.1126/science.1064281

    Article  CAS  PubMed  Google Scholar 

  • Pérez D, Kanninen M (2005) Effect of thinning on stem form and wood characteristics of teak (Tectona grandis) in a humid tropical site in Costa Rica. Silva Fenn 39:217–225

    Google Scholar 

  • Pooja V, Dinesh KY, Poonam K (2019) Tectona grandis (teak) – A review on its phytochemical and therapeutic potential Natural Product Research 33:2338–2354. https://doi.org/10.1080/14786419.2018.1440217

  • Qiu H, Liu R, Long L (2019) Analysis of chemical composition of extractives by acetone and the chromatic aberration of teak (Tectona grandis L.F.) from China. Molecules 24:1989. https://doi.org/10.3390/molecules24101989

  • Rajput SS, Shukla NK, Lal M (1991) Some studies on the variation of strength properties of Tectona grandis from Mizoram. J Timb Dev Assoc India 37:33–38

    Google Scholar 

  • Richter HG, Leithoff H, Sonntag U (2003) Characterisation and extension of juvenile wood in plantation- grown teak (Tectona grandis L.f.) from Ghana. In: Quality timber products of teak from sustainable forest management. Paper presented at the international conference on quality timber products of teak from sustainable forest management, Peechi, India, 2–5 December

    Google Scholar 

  • Rizanti ED et al (2018) Comparison of teak wood properties according to forest management: short versus long rotation. Ann for Sci 75:12. https://doi.org/10.1007/s13595-018-0716-8

    Article  Google Scholar 

  • Rocha DS, Da Silva JM, Navarro DMDAF, Camara CdAG, De Lira CS, Ramos CcS (2016) Potential antimicrobial and chemical composition of essential oils from piper caldense tissues. J Mex Chem Soc 60:148–151

    Google Scholar 

  • Rosamah E, Ferliyanti F, Kuspradini H, Dungani R, Aditiawati P (2020) Chemical content in two Teak woods (Tectona grandis Linn.F.) that has been used for 2 and 60 years. 3BIO 2:15–19

    Google Scholar 

  • Rowell RM, Pettersen R, Tshabalala MA (2012) Cell Wall Chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites, 2nd edn. CRC Press, Boca Raton, Florida, USA, pp 33–70

    Chapter  Google Scholar 

  • Rudi D, Bhat IH, Khalil HPSA, Naif A, Hermawan D (2012) Evaluation of antitermitic activity of different extracts obtained from indonesian teakwood (Tectona grandis L.f). BioResources 7:1452–1461

    Google Scholar 

  • Rudman P (1961) The causes of natural durability in timber Pt. VII. The causes of decay resistance in teak (Tectona grandis). Holzforschung 15:117–120

    Google Scholar 

  • Rudman P (1963) The causes of natural durability in timber, XI: some tests on toxicity of wood extractives and related compounds. Holzforschung 17:54–57. https://doi.org/10.1515/hfsg.1963.17.2.54

  • Rudman P, Gay FJ (1961) The causes of natural durability in timber part VI. Measurement of anti-termite properties of anthraquinones from Tectona grandis L.f. by rapid semi-micro method. Holzforschung 117. https://doi.org/10.1515/hfsg.1961.15.4.117

  • Rudman P, Da Costa EWB, Gay FJ, Wetherly AH (1958) Relationship of Tectoquinone to durability in Tectona grandis. Nature 101:721–722

    Article  Google Scholar 

  • Santos HS et al (2003) Cytotoxic naphthoquinones from roots of Lippia microphylla. Zeitschrift für Naturforschung C 58:517–520

    Google Scholar 

  • Sattar MA (1981) Some physical properties of 116 Bangladeshi timbers. Bull 7 (Wood Seasoning Series) FRI, Chittagong

    Google Scholar 

  • Sattar MA, Ali MO (1977) Shrinkage and density studies of teak of various age groups. In: Paper presented at the 2nd Annual Bangladesh Science Conference, Mymensingh

    Google Scholar 

  • Scheffer TC, Cowling EB (1966) Natural resistance of wood to microbial deterioration. Annu Rev Phytopathol 4:147–168

    Article  CAS  Google Scholar 

  • Schultz TP, Nicholas DD (2000) Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54:47–52

    Article  CAS  Google Scholar 

  • Simatupang MH, Rosamah E, Yamamoto K (1995) Importance of teakwood extractives on wood properties and for tree breeding. In: Paper presented at the 3rd Conference on Forestry and Forest Products Research Kuala Lumpur, 3–4 October 1995

    Google Scholar 

  • Southwell CR, Bultman JD (1971) Marine borer resistance of untreated woods over long periods of immersion in tropical waters. Biotropica 3:81

    Google Scholar 

  • Suarez AV, Satyal P, Setzer WN (2019) Chemical composition of the wood essential oil of Tectona grandis. Am J Essent Oil Nat Prod 7:23–24

    Google Scholar 

  • Sumthong P, Damvelg RA, Choi YH, Arentshorst M, Ram AF, Van den Hondel CAMJJ, Verpoorte R (2006) Activity of quinones from teak (Tectona grandis) on fungal cell wall stress. Planta Med 72: 943–944

    Google Scholar 

  • Sumthong P, Romero-Gonzàlez RR, Verpoorte R (2008) Identification of anti-wood rot compounds in teak (Tectona grandis L.f.) sawdust extract. J Wood Chem Technol 28:247–260. https://doi.org/10.1080/02773810802452592

    Article  CAS  Google Scholar 

  • Syafii W, Samejima M, Yoshimoto (1988) The role of extractives in decay resistance of Ulin wood (Eusideroxylon zwageri T. et. B.). Bull Tokyo Univ For 77:1–8

    Google Scholar 

  • Taylor AM, Gartner BM, Morell JJ (2002) Heartwood formation and natural durability. Wood Fiber Sci. 34(4):587–611

    Google Scholar 

  • Tewari VP, Mariswamy KM (2013) Heartwood, sapwood and bark content of teak trees grown in Karnataka. India J For Res 24:721–725

    CAS  Google Scholar 

  • Thulasidas PK, Baillères H (2017) wood quality for advanced uses of teak from natural and planted forests. In: Kollert W, Kleine M (eds) The global teak study. Analysis, evaluation and future potential of teak resources, vol 36. vol IUFRO World. International Union of Forest Research Organizations, Vienna, pp 73–81

    Google Scholar 

  • Thulasidas PK, Bhat KM (2007) Chemical extractive compounds determining the brown-rot decay resistance of teak wood. Holz Als Roh- Und Werkstoff 65:121–124. https://doi.org/10.1007/s00107-006-0127-7

    Article  CAS  Google Scholar 

  • Thulasidas PK, Bhat KM (2012) Mechanical properties and wood structure characteristics of 35-year old home-garden teak from wet and dry localities of Kerala, India in comparison with plantation teak. J Indian Acad Wood Sci. 9:23–32. https://doi.org/10.1007/s13196-012-0062-7

  • Tripati S, Shukla SR, Shashikala S, Sardar A (2016) Teak (Tectona grandis L.f.): a preferred timber for shipbuilding in India as evidenced from shipwrecks. Curr Sci 110:2060–2065

    Google Scholar 

  • Tsuchikawa S, Schwanninger S (2013) A review of recent near infrared research for wood and paper - Part 2. Appl Spectrosc Rev 48:560–587. https://doi.org/10.1080/05704928.2011.621079

    Article  Google Scholar 

  • Van Acker J et al (2003) Biological durability of wood in relation to end-use. Part 1. Towards a European standard for laboratory testing of the biological durability of wood Holz als Roh- und Werkstoff 61:35–45. https://doi.org/10.1007/s00107-002-0351-8

  • Verma SC, Singh NP, Sinha AK (2005) Determination and locational variations in the quantity of hydroxyanthraquinones and their glycosides in rhizomes of Rheum emodi using high-performance liquid chromatography. J Chromatogr A 1097:59–65

    Article  CAS  Google Scholar 

  • Wahyudi I, Priadi T, Rahayu IS (2014) Characteristics and basic properties of the 4- and 5- year-old faster-grown teakwoods from West Java Province Indones J Agric Sci 19:50–56

    Google Scholar 

  • Wanneng PX, Ozarska B, Daian MS (2014) Physical properties of Tectona grandis grown in Laos. J Trop for Sci 26:389–396

    Google Scholar 

  • Windeisen E, Klassen A, Wegener G (2003) On the chemical characterization of plantation teakwood from Panama. Holz Als Roh- Und Werkstoff 61:394–397. 10.1007/s00107-003-0425-2

    Article  CAS  Google Scholar 

  • Wood H (1991) Teak in Asia. In: Paper presented at the The China/ESCAP/FAO regional seminar on research and development of teak, Guangzhou, China

    Google Scholar 

  • Yang B, Jia H, Zhao Z, Pang S, Cai D (2020a) Horizontal and vertical distributions of heartwood for teak plantation. Forests 11:225. https://doi.org/10.3390/f11020225

  • Yang G, Liang K, Zhou Z, Wang X, Huang G (2020b) UPLC-ESI-MS/MS-based widely targeted metabolomics analysis of wood metabolites in teak (Tectona grandis). Molecules 25:2189. https://doi.org/10.3390/molecules25092189

  • Zabel RA, Morrell JJ (1992) Wood microbiology decay and its prevention. Academic Press Inc., San Diego, California

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Bobelé Niamké .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niamké, F.B., Amusant, N., Augustin, A.A., Chaix, G. (2021). Teakwood Chemistry and Natural Durability. In: Ramasamy, Y., Galeano, E., Win, T.T. (eds) The Teak Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-79311-1_7

Download citation

Publish with us

Policies and ethics