Skip to main content

Biomarker-Driven Analysis Using High-Throughput Approaches in Neuroinflammation and Neurodegenerative Diseases

  • Conference paper
  • First Online:
GeNeDis 2020

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1339))

Abstract

Aging is responsible for homeostatic dysregulation and the primary risk for neurodegenerative diseases. The main signaling pathways may regulate inflammatory-related disorders and neurodegeneration include genomic instability, cell senescence, and mitochondria dysfunction. The use of high-throughput technologies has emerged as a powerful approach to the rapid discovery of many candidate biomarkers for age-related diseases. Various types of molecules, such as nucleic acids, proteins, or metabolites, can serve as soluble factors in clinical practice with deviations in their normal biological levels being an indication of an underlying disease state. The development of multifactorial biomarkers based on models involving molecular alterations in complex disorders may also provide specific challenges for translating biological findings and targeted diagnostic tools. As diseases are often regulated by a multiset of markers that coordinate and interact each other in a complex signaling network to maintain holistic processes within a cell, potent network-based approaches to data-driven biomarker identification are required. System-based biomarker discovery pipelines can offer an extraordinary adjustment opportunity for data heterogeneity and limitation, whereas integrated analysis of distinct networks clusters  can provide important information for the early detection of intracellular pathogenic processes as well as for monitoring the response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vega S, Abian O, Velazquez-Campoy A (2019) Handling complexity in biological interactions. Journal of Thermal Analysis and Calorimetry 138:3229–3248

    Article  CAS  Google Scholar 

  2. Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD et al (2016) Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun 7:11295

    Google Scholar 

  3. Kany S, Vollrath JT, Relja B (2019) Cytokines in Inflammatory Disease. Int J Mol Sci. 20:6008

    Article  CAS  Google Scholar 

  4. Fu H, Hardy J, Duff KE (2018) Selective vulnerability in neurodegenerative diseases. Nat Neurosci 21:1350–1358

    Article  CAS  Google Scholar 

  5. Yu-Wai-Man P (2016) Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol 10:1322–1331

    Article  Google Scholar 

  6. Krokidis MG, Vlamos P (2018) Transcriptomics in amyotrophic lateral sclerosis. Front Biosci (Elite Ed) 10:103–121 

    Article  Google Scholar 

  7. Cioffi F, Ibrahim Adam RH, Broersen K (2019) Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer’s Disease. J Alzheimers Dis 72: 981–1017

    Article  CAS  Google Scholar 

  8. Liao Y, Dong Y, Cheng J (2017) The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders. Int J Mol Sci 18:248

    Article  Google Scholar 

  9. Aguilera G, Colín-González AL, Rangel-López E, Chavarría A, Santamaría A (2018) Redox signaling, neuroinflammation, and neurodegeneration. Antioxid Redox Signal 28(18):1626–1651

    Google Scholar 

  10. Cai Y, An SS, Kim S (2015) Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders Clin Interv Aging 10:1163–1172

    Google Scholar 

  11. Murphy MP and LeVine III H (2010) Alzheimer’s Disease and the β-Amyloid Peptide J Alzheimers Dis. 19: 311

    Google Scholar 

  12. Prentice H, Modi JR, Wu J-Y (2015) Mechanisms of Neuronal Protection against Excitotoxicity, Endoplasmic Reticulum Stress, and Mitochondrial Dysfunction in Stroke and Neurodegenerative Diseases. Oxid Med Cell Longev. 2015: 964518

    Article  Google Scholar 

  13. Wang R and Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57: 1041–1048

    Article  CAS  Google Scholar 

  14. Denis PA (2013) Alzheimer's disease: a gas model. The NADPH oxidase-Nitric Oxide system as an antibubble biomachinery. Med Hypotheses 81:976–987

    Article  CAS  Google Scholar 

  15. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433

    Google Scholar 

  16. Sultana R, Perluigi M, Butterfield DA (2013) Lipid Peroxidation Triggers Neurodegeneration: A Redox Proteomics View into the Alzheimer Disease Brain. Free Radic Biol Med 62:157–169

    Article  CAS  Google Scholar 

  17. Mao P, Reddy PH (2011) Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: Implications for early intervention and therapeutics Biochim Biophys Acta. 1812:1359–1370

    Google Scholar 

  18. Mórocz M, Kálmán J, Juhász A, Sinkó I, McGlynn AP, Downes CS, Janka Z, Raskó I (2002) Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer's disease. Neurobiol Aging 23:47–53 

    Article  Google Scholar 

  19. Bergman M, Salman H, Beloosesky Y, Djaldetti M, Bessler H (2002) Are peripheral blood cells from patients with Alzheimer disease more sensitive to apoptotic stimuli? Alzheimer Dis Assoc Disord 16:156–60

    Article  CAS  Google Scholar 

  20. David H (2009) Small Dysregulation of calcium homeostasis in Alzheimer's disease. Neurochem Res 34:1824–1829

    Article  Google Scholar 

  21. Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert Rev Neurother 8:1703–1718

    Article  CAS  Google Scholar 

  22. Tayebati SK, Amenta F, Amici S, El-Assouad D, Gallai V, Ricci A, Parnetti L (2001) Peripheral blood lymphocytes muscarinic cholinergic receptor subtypes in Alzheimer's disease: a marker of cholinergic dysfunction? J Neuroimmunol 121:126–131

    Google Scholar 

  23. Tan E-K, Chao Y-X, West A, Chan L-L, Poewe W, Jankovic J (2020) Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 16:303–318

    Article  Google Scholar 

  24. Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S et al (2018) Interplay between age and neuroinflammation in multiple sclerosis: Effects on motor and cognitive functions. Front Aging Neurosci 10:238

    Google Scholar 

  25. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21:1359–1369

    Google Scholar 

  26. Agrawal M and Biswas A (2015) Molecular diagnostics of neurodegenerative disorders. Front Mol Biosci 2: 54

    Article  Google Scholar 

  27. Strimbu K and Tavel JA (2010) What are Biomarkers? Curr Opin HIV AIDS. 5:463–466 

    Article  Google Scholar 

  28. Galasko D (2015) Expanding the Repertoire of Biomarkers for Alzheimer’s Disease: Targeted and Non-targeted Approaches. Front Neurol. 6:256

    Article  Google Scholar 

  29. Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, Zahedi RP, Batist G, Borchers CH (2020) Targeted and Untargeted Proteomics Approaches in Biomarker Development. Proteomics 20:e1900029

    Google Scholar 

  30. Park ST and Kim J (2016) Trends in Next-Generation Sequencing and a New Era for Whole Genome Sequencing. Int Neurourol J 20:S76–83

    Google Scholar 

  31. Trevino V, Falciani F, Barrera-Saldaña HA (2007) DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med 13:527–541

    Google Scholar 

  32. Ballester LY, Luthra R, Kanagal-Shamanna R, Singh RR (2016) Advances in clinical next-generation sequencing: target enrichment and sequencing technologies. Expert Rev Mol Diagn 16:357–372

    Article  CAS  Google Scholar 

  33. Rouzier C, Chaussenot A, Serre V, Fragaki K, Bannwarth S, Ait-El-Mkadem S et al (2014). Quantitative multiplex PCR of short fluorescent fragments for the detection of large intragenic POLG rearrangements in a large French cohort. Eur J Hum Genet 22:542–550

    Google Scholar 

  34. Jeuken J, Cornelissen S, Boots-Sprenger S, Gijsen S, Wesseling P (2006) Multiplex Ligation-Dependent Probe AmplificationA Diagnostic Tool for Simultaneous Identification of Different Genetic Markers in Glial Tumors. J Mol Diagn 8:433–443

    Article  CAS  Google Scholar 

  35. Guerreiro R, Brás J, Hardy J and Singleton A (2014) Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet 23:R47–R53

    Article  CAS  Google Scholar 

  36. Salk JJ, Schmitt MW, Loeb LA (2018) Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet 19:269–285

    Article  CAS  Google Scholar 

  37. Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I (2015) Fundamentals of protein interaction network mapping. Mol Syst Biol. 11:848

    Article  Google Scholar 

  38. Olshina MA, Sharon M (2016) Mass Spectrometry: A Technique of Many Faces. Q Rev Biophys 49:e18 

    Article  Google Scholar 

  39. Ding Z and Kihara D (2018) Computational Methods for Predicting Protein-Protein Interactions Using Various Protein Features. Curr Protoc Protein Sci 93:e62

    PubMed  PubMed Central  Google Scholar 

  40. Wang Y-C, Chen S-L, Deng N-Y, Wang Y (2016) Computational probing protein-protein interactions targeting small molecules. Bioinformatics 32:226–234

    CAS  PubMed  Google Scholar 

  41. Gorrochategui E, Jaumot J, Lacorte S, Tauler R (2016) Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. Trends in Analytical Chemistry 82:425–442

    Google Scholar 

  42. Maudsley S, Chadwick W, Wang L, Zhou Y, Martin B, Park S-S (2011) Bioinformatic Approaches to Metabolic Pathways Analysis. Methods Mol Biol 756:99–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios G. Krokidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krokidis, M.G. (2021). Biomarker-Driven Analysis Using High-Throughput Approaches in Neuroinflammation and Neurodegenerative Diseases. In: Vlamos, P. (eds) GeNeDis 2020. Advances in Experimental Medicine and Biology, vol 1339. Springer, Cham. https://doi.org/10.1007/978-3-030-78787-5_8

Download citation

Publish with us

Policies and ethics