Skip to main content

The Steady Navier-Stokes System

  • Chapter
  • First Online:
Equations of Motion for Incompressible Viscous Fluids

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 497 Accesses

Abstract

In this chapter, we are concerned with the steady Navier-Stokes systems with mixed boundary conditions involving Dirichlet, pressure, vorticity, stress and normal derivative of velocity together. As we have seen in Sect. 2.3.2, according to what kinds of bilinear forms for variational formulation are used, types of boundary conditions under consideration together are different. The variational formulations in Sect. 2.3.2 do not reflect, for example, the boundary conditions for stress and pressure together, but this case is important in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Pressley, Elementary Differential Geometry (Springer, 2010)

    Google Scholar 

  2. U. Kangro, R. Nicoaides, Divergence boundary conditions for vector Helmholtz equations with divergence constraints. Math. Model. Numer. Anal. 33(3), 479–492 (1999)

    Article  MathSciNet  Google Scholar 

  3. M. Costabel, A coecive bilinear form for Maxwell’s equations. J. Math. Anal. Appl. 157, 527–541 (1991)

    Article  MathSciNet  Google Scholar 

  4. T. Kim, D. Cao, Some properties on the surfaces of vector fields and its application to the Stokes and Navier-Stokes problems with mixed boundary conditions. Nonlinear Anal. 113, 94–114 (2015). Erratum, ibid 135, 249–250 (2016)

    Google Scholar 

  5. T. Clopeau, A. Mikelić, R. Robert, On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity 11, 1625–1636 (1998)

    Article  MathSciNet  Google Scholar 

  6. H. Beirão da Veiga, F. Crispo, Sharp inviscid limit results under Navier type boundary conditions, An Lp theory. J. Math. Fluid Mech. 12(3), 397–411 (2010)

    Article  MathSciNet  Google Scholar 

  7. H. Beirão da Veiga, F. Crispo, A missed persistence property for the Euler equations, and its effect on inviscid limits. Nonlinearity 25(6), 1661–1669 (2012)

    Article  MathSciNet  Google Scholar 

  8. N.D. Kopachevsky, S.G. Krein, Operator Approach to Linear Problems of Hydrodynamics 1, 2 (Springer Basel AG 2001, 2003)

    Google Scholar 

  9. V. Maz’ya, J. Rossmann, Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280(7), 751–793 (2007)

    Article  MathSciNet  Google Scholar 

  10. J. Rossmann, Mixed boundary value problems for Stokes and Navier-Stokes systems in polyhedral domains. Oper. Theory Adv. Appl. 193, 269–280 (2009)

    MathSciNet  MATH  Google Scholar 

  11. V. Maz’ya, J. Rossmann, Mixed boundary value problems for the Navier-Stokes system in polyhedral domains. Arch. Rational Mech. Anal. 194, 669–712 (2009)

    Article  MathSciNet  Google Scholar 

  12. M. Orlt, A.-M. Sändrig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, Boundary value problems and integral equations in nonsmooth domains. Lect. Note Pure Appl. Math. 167, 185–201 (1995)

    MATH  Google Scholar 

  13. A. Russo, G. Starita, A mixed problem for the steady Navier-Stokes equations. Math. Comput. Model. 49, 681–688 (2009)

    Article  MathSciNet  Google Scholar 

  14. R. Brown, I. Mitrea, M. Mitrea, M. Wright, Mixed boundary value problems for the Stokes system. Trans. Am. Math. Soc. 362(3), 1211–1230 (2010)

    Article  MathSciNet  Google Scholar 

  15. C. Ebmeyer, J. Frehse, Steady Navier-Stokes equations with mixed boundary value conditions in three-dimensional Lipschitzian domains. Mathematische Annalen 319, 349–381 (2001)

    Article  MathSciNet  Google Scholar 

  16. C. Begue, C. Conca, F. Murat, O. Pironneau, A nouveau sur les equations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. C. R. Acad. Sci. Paris Ser. I(304), 23–28 (1987)

    MATH  Google Scholar 

  17. C. Begue, C. Conca, F. Murat, O. Pironneau, Les Equations de Stokes et de Navier-Stokes Avec Des Condition Sur La Pression. Nonlinear Partial Diff. Equat. and Their Appl. College de France, Seminar IX, 179–384 (1988)

    Google Scholar 

  18. C. Conca, F. Murat, O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure. Japan J. Math. 20(2), 279–318 (1994)

    Article  MathSciNet  Google Scholar 

  19. C. Conca, C. Pares, O. Pironneau, M. Thiriet, Navier-Stokes equations with imposed pressure and velocity fluxes. Inter. J. Numer. Meth. Fluids 20, 267–287 (1995)

    Article  MathSciNet  Google Scholar 

  20. A.A. Illarionov, A.Yu. Chebotarev, Solvability of a mixed boundary value problem for the stationary Navier-Stokes equations. Diff. Equat. 37(5), 724–731 (2001)

    Google Scholar 

  21. C. Bernardi, F. Hecht, R. Verfürth, A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions. ESAIM: Math. Model. Numer. Anal. 43, 1185–1201 (2009)

    Google Scholar 

  22. V. Girault, Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in \(R^3\). Math. Comput. 51(183), 55–74 (1988)

    MATH  Google Scholar 

  23. M. Beneš, Solutions to the mixed problem of viscous incompressible flows in a channel. Arch. Math. 93, 287–297 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tujin Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, T., Cao, D. (2021). The Steady Navier-Stokes System. In: Equations of Motion for Incompressible Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-78659-5_3

Download citation

Publish with us

Policies and ethics