Skip to main content

Nanoparticle Systems Applied for Immunotherapy in Various Treatment Modalities

  • Chapter
  • First Online:
Nanoparticle-Mediated Immunotherapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 12))

  • 415 Accesses

Abstract

In the fight against cancer, studies have shown that administering combination treatments such as chemotherapy and radiotherapy improve patient outcomes. Ultimately to overcome the limitations posed by current treatments, such as deleterious side effects and high reoccurrence rates, new therapeutic strategies need to be explored and developed. Recently, methods designed to modulate the immune system using antigens, adjuvants, and immunotherapy drugs have been approved for use in patients and have shown to increase patients’ survival. For effective delivery of immunoagents, nanoparticles have been explored for their ability to deliver cancer therapeutics. Moreover, plasmonic metal and organic nanoparticles can be multifunctional in their mode of action not only acting as delivery agents of drugs, but also as additional therapeutic vessels since their unique properties enable photothermal and photodynamic therapy. A plethora of studies have demonstrated that chemotherapy, photothermal, and photodynamic therapy can prime the immune system for effective cancer killing and cancer vaccine effects, as immunogenic cell death occurs after administration of these treatments. This chapter highlights various nanoparticle platforms used in the cancer therapeutic arsenal for immunotherapy. Moreover, combination of nanomaterials with other treatments, including photothermal therapy, photodynamic therapy, and chemotherapy will be discussed towards the understanding of defeating cancer and preventing tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yarchoan, M., Hopkins, A., Jaffee, E.M.: Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377(25), 2500 (2017)

    Article  Google Scholar 

  2. Sharma, P., et al.: Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 168(4), 707–723 (2017)

    Article  Google Scholar 

  3. Riley, R.S., et al.: Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 1 (2019)

    Google Scholar 

  4. Jeanbart, L., Swartz, M.A.: Engineering opportunities in cancer immunotherapy. Proc. Natl. Acad. Sci. 112(47), 14467–14472 (2015)

    Article  Google Scholar 

  5. Manolova, V., et al.: Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38(5), 1404–1413 (2008)

    Article  Google Scholar 

  6. Guo, L.R., et al.: Combinatorial photothermal and Immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano. 8(6), 5670–5681 (2014)

    Article  Google Scholar 

  7. Milling, L., Zhang, Y., Irvine, D.J.: Delivering safer immunotherapies for cancer. Adv. Drug Deliv. Rev. 114, 79–101 (2017)

    Article  Google Scholar 

  8. Pfreundschuh, M.G., et al.: Phase I study of intratumoral application of recombinant human tumor necrosis factor. Eur. J. Cancer Clin. Oncol. 25(2), 379–388 (1989)

    Article  Google Scholar 

  9. van Herpen, C.M., et al.: Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. Int. J. Cancer. 123(10), 2354–2361 (2008)

    Article  Google Scholar 

  10. Bartsch, H.H., et al.: Intralesional application of recombinant human tumor necrosis factor alpha induces local tumor regression in patients with advanced malignancies. Eur. J. Cancer Clin. Oncol. 25(2), 287–291 (1989)

    Article  Google Scholar 

  11. Kwong, B., et al.: Localized immunotherapy via liposome-anchored anti-CD137+IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res. 73(5), 1547–1558 (2013)

    Article  Google Scholar 

  12. Robbins, P.F., et al.: A pilot trial using lymphocytes genetically engineered with an NY-ESO-1–reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21(5), 1019–1027 (2015)

    Article  Google Scholar 

  13. Bobisse, S., et al.: Sensitive and frequent identification of high avidity neo-epitope specific CD8+ T cells in immunotherapy-naive ovarian cancer. Nat. Commun. 9(1), 1092 (2018)

    Article  Google Scholar 

  14. Tran, E., et al.: Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 344(6184), 641–645 (2014)

    Article  Google Scholar 

  15. Maude, S.L., et al.: Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378(5), 439–448 (2018)

    Article  Google Scholar 

  16. Neelapu, S.S., et al.: Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377(26), 2531–2544 (2017)

    Article  Google Scholar 

  17. Schuster, S.J., et al.: Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377(26), 2545–2554 (2017)

    Article  Google Scholar 

  18. Hollyman, D., et al.: Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother. 32(2), 169 (2009)

    Article  Google Scholar 

  19. Huang, X., et al.: Sleeping beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol. Ther. 16(3), 580–589 (2008)

    Article  Google Scholar 

  20. Perica, K., et al.: Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano. 8(3), 2252–2260 (2014)

    Article  Google Scholar 

  21. Perica, K., et al.: Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. ACS Nano. 9(7), 6861–6871 (2015)

    Article  Google Scholar 

  22. Zheng, B.B., et al.: Bacterium-Mimicking Vector with Enhanced Adjuvanticity for Cancer Immunotherapy and Minimized Toxicity. Adv. Funct. Mater. 29, 33 (2019)

    Article  Google Scholar 

  23. Badie, B., Berlin, J.M.: The future of CpG immunotherapy in cancer. Immunotherapy. 5(1), 1–3 (2013)

    Article  Google Scholar 

  24. Lin, A.Y., et al.: Gold Nanoparticle Delivery of Modified CpG Stimulates Macrophages and Inhibits Tumor Growth for Enhanced Immunotherapy. PLoS One. 8, 5 (2013)

    Google Scholar 

  25. Paciotti, G.F., et al.: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11(3), 169–183 (2004)

    Article  Google Scholar 

  26. Goel, R., et al.: Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. Nanomedicine. 4(4), 401–410 (2009)

    Article  Google Scholar 

  27. Shenoi, M.M., et al.: Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine. 6(3), 545–563 (2011)

    Article  Google Scholar 

  28. Lin, A.Y., et al.: High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro. Nanoscale Res. Lett. 8 (2013)

    Google Scholar 

  29. Lee, I.H., et al.: Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. Int. Ed. Engl. 51(35), 8800–8805 (2012)

    Article  Google Scholar 

  30. Arnáiz, B., et al.: Cellular uptake of gold nanoparticles bearing HIV gp120 oligomannosides. Bioconjug. Chem. 23(4), 814–825 (2012)

    Article  Google Scholar 

  31. Liu, H., et al.: Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 507(7493), 519 (2014)

    Article  Google Scholar 

  32. Kuai, R., et al.: Designer vaccine nanodiscs for personalized cancer immunotherapy. Nature Materials. 16(4), 489 (2017)

    Article  Google Scholar 

  33. Kranz, L.M., et al.: Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 534(7607), 396 (2016)

    Article  Google Scholar 

  34. Ramishetti, S., Peer, D.: Engineering lymphocytes with RNAi. Adv. Drug Deliv. Rev. 141, 55–66 (2019)

    Article  Google Scholar 

  35. Falk, M.H., Issels, R.D.: Hyperthermia in oncology. Int. J. Hyperth. 17(1), 1–18 (2001)

    Article  Google Scholar 

  36. Owusu, R.A., Abern, M.R., Inman, B.A.: Hyperthermia as adjunct to intravesical chemotherapy for bladder cancer. Biomed. Res. Int., 7 (2013)

    Google Scholar 

  37. Hildebrandt, B., et al.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43(1), 33–56 (2002)

    Article  Google Scholar 

  38. Frey, B., et al.: Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperth. 28(6), 528–542 (2012)

    Article  Google Scholar 

  39. Schildkopf, P., et al.: Biological rationales and clinical applications of temperature controlled hyperthermia—implications for multimodal cancer treatments. Curr. Med. Chem. 17(27), 3045–3057 (2010)

    Article  Google Scholar 

  40. Wust, P., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3(8), 487–497 (2002)

    Article  Google Scholar 

  41. Loo, C., et al.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3(1), 33–40 (2004)

    Article  Google Scholar 

  42. Pandita, T.K., Pandita, S., Bhaumik, S.R.: Molecular parameters of hyperthermia for radiosensitization. Crit. Rev. Eukaryot. Gene Expr. 19(3), 235–251 (2009)

    Article  Google Scholar 

  43. Takada, T., et al.: Growth inhibition of Re-Challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy. J. Biomed. Biotechnol., 13 (2009)

    Google Scholar 

  44. Koning, G.A., et al.: Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors. Pharm. Res. 27(8), 1750–1754 (2010)

    Article  Google Scholar 

  45. Wang, C., et al.: Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26(48), 8154–8162 (2014)

    Article  Google Scholar 

  46. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  47. Turkevich, J., Garton, G., Stevenson, P.: The color of colloidal gold. J. Colloid Sci. 9, 26–35 (1954)

    Article  Google Scholar 

  48. Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20 (1973)

    Article  Google Scholar 

  49. Khoury, C.G., Vo-Dinh, T.: Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J. Phys. Chem. C. 112(48), 18849–18859 (2008)

    Article  Google Scholar 

  50. Yuan, H., et al.: Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology. 23, 1361–6528 (2012) (Electronic)

    Article  Google Scholar 

  51. Liu, Y., et al.: A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 5(9), 946–960 (2015)

    Article  Google Scholar 

  52. Yuan, H., et al.: In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine. 8(8), 1355–1363 (2012)

    Article  Google Scholar 

  53. Yuan, H., Fales, A.M., Vo-Dinh, T.: TAT peptide-functionalized gold Nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 134(28), 11358–11361 (2012)

    Article  Google Scholar 

  54. Abadeer, N.S., Murphy, C.J.: Recent Progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C. 120(9), 4691–4716 (2016)

    Article  Google Scholar 

  55. Villiers, C.L., et al.: Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J. Nanopart. Res. 12(1), 55–60 (2010)

    Article  Google Scholar 

  56. Yen, H.J., Hsu, S.H., Tsai, C.L.: Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small. 5(13), 1553–1561 (2009)

    Article  Google Scholar 

  57. Tsai, C.-Y., et al.: Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J. Immunol. 188(1), 68–76 (2012)

    Article  Google Scholar 

  58. Sumbayev, V.V., et al.: Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small. 9(3), 472–477 (2013)

    Article  Google Scholar 

  59. Nguyen, H.T., et al.: Activation of inflammasomes by tumor cell death mediated by gold nanoshells. Biomaterials. 33(7), 2197–2205 (2012)

    Article  Google Scholar 

  60. Visaria, R.K., et al.: Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol. Cancer Ther. 5(4), 1014–1020 (2006)

    Article  Google Scholar 

  61. Bear, A.S., et al.: Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer. PLoS One. 8(7), e69073 (2013)

    Article  Google Scholar 

  62. Yavuz, M.S., et al.: Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8(12), 935 (2009)

    Article  Google Scholar 

  63. You, J., et al.: Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J. Control. Release. 158(2), 319–328 (2012)

    Article  Google Scholar 

  64. Casares, N., et al.: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202(12), 1691–1701 (2005)

    Article  Google Scholar 

  65. Choi, M.-R., et al.: A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 7(12), 3759–3765 (2007)

    Article  Google Scholar 

  66. Kennedy, L.C., et al.: T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res. Lett. 6 (2011)

    Google Scholar 

  67. Liu, Y., et al.: Synergistic Immuno Photothermal Nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Sci. Rep. 7(1), 8606 (2017)

    Article  Google Scholar 

  68. Yu, X., et al.: Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional Nanographenes. ACS Nano. 11(10), 10147–10158 (2017)

    Article  Google Scholar 

  69. Fales, A.M., Yuan, H., Vo-Dinh, T.: Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. Langmuir. 27(19), 12186–12190 (2011)

    Article  Google Scholar 

  70. Fales, A.M., Yuan, H., Vo-Dinh, T.: Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Mol. Pharm. 10(6), 2291–2298 (2013)

    Article  Google Scholar 

  71. Fales, A.M., Crawford, B.M., Vo-Dinh, T.: Folate receptor-targeted theranostic nanoconstruct for surface-enhanced Raman scattering imaging and photodynamic therapy. ACS Omega. 1(4), 730–735 (2016)

    Article  Google Scholar 

  72. Yan, F., et al.: Apoferritin protein cages: a novel drug nanocarrier for photodynamic therapy. Chem. Commun. (Camb.). 38, 4579–4581 (2008)

    Article  Google Scholar 

  73. Yan, F., et al.: Cellular uptake and photodynamic activity of protein nanocages containing methylene blue photosensitizing drug. Photochem. Photobiol. 86(3), 662–666 (2010)

    Article  Google Scholar 

  74. Wang, C., Cheng, L., Liu, Z.: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics. 3(5), 317–330 (2013)

    Article  Google Scholar 

  75. Wang, C., et al.: Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 32(26), 6145–6154 (2011)

    Article  Google Scholar 

  76. Xu, J., et al.: Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano. 11(5), 4463–4474 (2017)

    Article  Google Scholar 

  77. Jin, X., et al.: Aptamer-functionalized upconverting nanoformulations for light-switching cancer-specific recognition and in situ photodynamic–chemo sequential theranostics. ACS Appl. Mater. Interfaces. (2020)

    Google Scholar 

  78. Yang, Y., et al.: G-Quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy. Nano Lett. 18(11), 6867–6875 (2018)

    Article  Google Scholar 

  79. Lasic, D.D.: The mechanism of vesicle formation. Biochem. J. 256(1), 1–11 (1988)

    Article  Google Scholar 

  80. Barenholz, Y.: Doxil (R)—the first FDA-approved nano-drug: lessons learned. J. Control. Release. 160(2), 117–134 (2012)

    Article  Google Scholar 

  81. Gregoriadis, G., Saffie, R., deSouza, J.B.: Liposome-mediated DNA vaccination. FEBS Lett. 402(2–3), 107–110 (1997)

    Article  Google Scholar 

  82. McNamara, K.P., Rosenzweig, Z.: Dye-encapsulating liposomes as fluorescence-based oxygen nanosensors. Anal. Chem. 70(22), 4853–4859 (1998)

    Article  Google Scholar 

  83. Miranda, D., et al.: Highly-soluble cyanine J-aggregates entrapped by liposomes for in vivo optical imaging around 930 nm. Theranostics. 9(2), 381–390 (2019)

    Article  Google Scholar 

  84. Yoon, H.J., et al.: Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl. Mater. Interfaces. 9(7), 5683–5691 (2017)

    Article  Google Scholar 

  85. Cheng, L., et al.: Renal-Clearable PEGylated Porphyrin Nanoparticles for Image-guided Photodynamic Cancer Therapy. Adv. Funct. Mater. 27, 34 (2017)

    Article  Google Scholar 

  86. Song, X.J., et al.: Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Res. 10(4), 1200–1212 (2017)

    Article  Google Scholar 

  87. Feng, L.Z., et al.: Theranostic liposomes with HypoxiaActivated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano. 11(1), 927–937 (2017)

    Article  Google Scholar 

  88. Korbelik, M., et al.: N-dihydrogalactochitosan as immune and direct antitumor agent amplifying the effects of photodynamic therapy and photodynamic therapy-generated vaccines. Int. Immunopharmacol. 75 (2019)

    Google Scholar 

  89. DeVita, V.T., Chu, E.: A history of cancer chemotherapy. Cancer Res. 68(21), 8643–8653 (2008)

    Article  Google Scholar 

  90. Mead, G.M., Jacobs, C.: Changing-role of chemotherapy in treatment of head and neck-cancer. Am. J. Med. 73(4), 582–595 (1982)

    Article  Google Scholar 

  91. Petrelli, A., Giordano, S.: From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem. 15(5), 422–432 (2008)

    Article  Google Scholar 

  92. Krysko, D.V., et al.: Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer. 12(12), 860–875 (2012)

    Article  Google Scholar 

  93. Kroemer, G., et al.: Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31(1), 51–72 (2013)

    Article  Google Scholar 

  94. Rios-Doria, J., et al.: Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia. 17(8), 661–670 (2015)

    Article  Google Scholar 

  95. Ahmadzada, T., Reid, G., McKenzie, D.R.: Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys. Rev. 10(1), 69–86 (2018)

    Article  Google Scholar 

  96. Kim, H.S., Seo, H.K.: Immune checkpoint inhibitors for urothelial carcinoma. Investig Clin Urol. 59(5), 285–296 (2018)

    Article  Google Scholar 

  97. Greish, K.: Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol Methods Protocols. 624, 25–37 (2010)

    Article  Google Scholar 

  98. Kobayashi, K., et al.: Surface engineering of nanoparticles for therapeutic applications. Polym. J. 46(8), 460–468 (2014)

    Article  Google Scholar 

  99. Zhao, X., et al.: Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 102, 187–197 (2016)

    Article  Google Scholar 

  100. Zhong, Y.N., et al.: cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. J. Control. Release. 195, 63–71 (2014)

    Article  Google Scholar 

  101. Zhong, Y., et al.: Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. Biomacromolecules. 14(7), 2411–2419 (2013)

    Article  Google Scholar 

  102. Cai, Z., et al.: NIR-triggered chemo-photothermal therapy by thermosensitive gold Nanostar@mesoporous silica@liposome-composited drug delivery systems. ACS Appl. Bio Mater. 3(8), 5322–5330 (2020)

    Article  Google Scholar 

  103. Su, G., et al.: Mesoporous silica-coated gold nanostars with drug payload for combined chemo-photothermal cancer therapy. J. Drug Target. 27(2), 201–210 (2019)

    Article  Google Scholar 

  104. Bisker, G., et al.: Controlled release of rituximab from gold nanoparticles for phototherapy of malignant cells. J. Control. Release. 162(2), 303–309 (2012)

    Article  Google Scholar 

  105. Jimbow, K., et al.: Melanoma-targeted chemothermotherapy and in situ peptide immunotherapy through HSP production by using melanogenesis substrate, NPrCAP, and magnetite nanoparticles. J. Skin Cancer. 2013, 742925–742925 (2013)

    Article  Google Scholar 

  106. Sato, A., et al.: Melanoma-targeted chemo-thermo-immuno (CTI)-therapy using N-propionyl-4-S-cysteaminylphenol-magnetite nanoparticles elicits CTL response via heat shock protein-peptide complex release. Cancer Sci. 101(9), 1939–1946 (2010)

    Article  Google Scholar 

  107. Yamamoto, S., et al.: Three-dimensional magnetic cell array for evaluation of anti-proliferative effects of chemo-thermo treatment on cancer spheroids. Biotechnol. Bioprocess Eng. 20(3), 488–497 (2015)

    Article  Google Scholar 

  108. Feng, L.Z., et al.: Smart pH-responsive nanocarriers based on Nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv. Healthc. Mater. 3(8), 1261–1271 (2014)

    Article  Google Scholar 

  109. Zhou, F., et al.: Photo-activated chemo-immunotherapy for metastatic cancer using a synergistic graphene nanosystem. Biomaterials. 265, 120421 (2021)

    Article  Google Scholar 

  110. Sun, R., et al.: Photoactivated H2 nanogenerator for enhanced chemotherapy of bladder cancer. ACS Nano. 14(7), 8135–8148 (2020)

    Article  Google Scholar 

  111. Chattopadhyay, S., et al.: Synthetic immunogenic cell death mediated by intracellular delivery of STING agonist Nanoshells enhances anticancer chemo-immunotherapy. Nano Lett. 20(4), 2246–2256 (2020)

    Article  Google Scholar 

  112. Liu, J.J., et al.: pH-Sensitive dissociable nanoscale coordination polymers with drug loading for synergistically enhanced chemoradiotherapy (vol 27, 1703832, 2017). Adv. Funct. Mater. 29, 51 (2019)

    Article  Google Scholar 

  113. Sessa, G., Weissmann, G.: Phospholipid spherules (liposomes) as a model for biological membranes. J. Lipid Res. 9(3), 310 (1968)

    Article  Google Scholar 

  114. Yoon, H.-J., et al.: Photothermally amplified therapeutic liposomes for effective combination treatment of cancer. ACS Appl. Mater. Interfaces. 10(7), 6118–6123 (2018)

    Article  Google Scholar 

  115. Shen, F.Y., et al.: Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemoimmunotherapy of colorectal cancer. Biomaterials. 255 (2020)

    Google Scholar 

  116. Lu, J.Q., et al.: Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano. 12(11), 11041–11061 (2018)

    Article  Google Scholar 

  117. Kuai, R., et al.: Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 4(4), eaao1736 (2018)

    Article  Google Scholar 

  118. Seth, A., Heo, M.B., Lim, Y.T.: Poly (γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials. 35(27), 7992–8001 (2014)

    Article  Google Scholar 

  119. Tian, L., et al.: Coordination Polymers Integrating Metalloimmunology with Immune Modulation to Elicit Robust Cancer Chemoimmunotherapy. CCS Chemistry.

    Google Scholar 

  120. Lu, J., et al.: Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 8(1), 1811 (2017)

    Article  Google Scholar 

  121. Jemal, A., et al. Global cancer statistics. (1542–4863 (Electronic))

    Google Scholar 

  122. Zhang, L., et al.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Therapeut. 83(5), 761–769 (2008)

    Article  Google Scholar 

  123. Kamyshny, A., Magdassi, S.: Conductive nanomaterials for printed electronics. Small. 10(17), 3515–3535 (2014)

    Article  Google Scholar 

  124. Dastjerdi, R., Montazer, M.: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surfaces B-Biointerfaces. 79(1), 5–18 (2010)

    Article  Google Scholar 

  125. Vance, M.E., Kuiken, T., Vejerano, E. P., McGinnis, S.P., Hochella, M.F., Jr., Rejeski, D. and Hull, M.S., Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory. (2019)

    Google Scholar 

  126. Kreyling, W.G., Semmler-Behnke, M., Chaudhry, Q.: A complementary definition of nanomaterial. Nano Today. 5(3), 165–168 (2010)

    Article  Google Scholar 

  127. Smith, A.M., Mancini, M.C., Nie, S.M.: BIOIMAGING second window for in vivo imaging. Nat. Nanotechnol. 4(11), 710–711 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (1R01EB028078-01A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Cupil-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cupil-Garcia, V., Crawford, B.M., Vo-Dinh, T. (2021). Nanoparticle Systems Applied for Immunotherapy in Various Treatment Modalities. In: Vo-Dinh, T. (eds) Nanoparticle-Mediated Immunotherapy. Bioanalysis, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-78338-9_6

Download citation

Publish with us

Policies and ethics