Skip to main content

Boundary Value Problems for 3D-Dirac Operators and MIT Bag Model

  • Conference paper
  • First Online:
Operator Theory and Harmonic Analysis (OTHA 2020)

Abstract

We consider the operator \(\mathbb {D}_{\boldsymbol {A,}\Phi ,\mathfrak {B}}\) of boundary value problem

$$\displaystyle \mathbb {D}_{\boldsymbol {A,}\Phi ,\mathfrak {B}}\boldsymbol {u=} \left \{{\begin {array}[c]{c} \mathfrak {D}_{\boldsymbol {A},\Phi }\boldsymbol {u}\mbox{ on }\Omega \\ \mathfrak {B}\boldsymbol {u=u}_{\partial \Omega }^{(2)}-\mathfrak {b} \boldsymbol {u}_{\partial \Omega }^{(1)}\ \mbox{on }\partial \Omega \end {array}}\right . $$
(1)

for 3D −Dirac operators \(\mathfrak {D}_{\boldsymbol {A},\Phi }\) with the magnetic potential \(\boldsymbol {A}\in L^{\infty }(\Omega ,\mathbb {R}^{3}),\) and electric potential Φ ∈ L ( Ω) in domain \(\Omega \subset \mathbb {R}^{3}\) with C 2-uniformly regular boundary, where \(\boldsymbol {u=}\left ( \begin {array} [c]{c} \boldsymbol {u}^{(1)}\\ \boldsymbol {u}^{(2)} \end {array} \right ) \in \mathbb {C}^{4}\) be a vector with \(\boldsymbol {u}^{(j)} \in \mathbb {C}^{2},j=1,2,\boldsymbol {u}_{\partial \Omega }^{(j)}\) is the boundary value of u (j) on  Ω, where \(\mathfrak {b}\) is a 2 × 2 matrix with entries \(\mathfrak {b}_{ij}\) belonging to the space of bounded continuous functions on  Ω. We associate with this boundary value problem an unbounded operator \(\mathcal {D}_{\boldsymbol {A} ,\Phi ,\mathfrak {B}}\) in \(L^{2}(\Omega ,\mathbb {C}^{4})\) defined by the Dirac operator \(\mathfrak {D}_{\boldsymbol {A},\Phi }\) on Ω with domain

$$\displaystyle dom\mathcal {D}_{\boldsymbol {A},\Phi ,\mathfrak {B}}=\left \{ \boldsymbol {u}\in H^{1}(\Omega ,\mathbb {C}^{4}):\boldsymbol {u}_{\partial \Omega }^{(2)} -\mathfrak {b}\boldsymbol {u}_{\partial \Omega }^{(1)}=\boldsymbol {0}\mbox{ on }\partial \Omega \right \} . $$

We obtain conditions of the self-adjointness of \(\mathcal {D}_{\boldsymbol {A} ,\Phi ,\mathfrak {B}}\) and the discreteness of its spectrum. We give applications of this results to the operator of MIT bag model of relativistic quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agranovich, M.S.: Elliptic boundary problems. In: Agranovich, M.S., Egorov, Yu.V., Shubin, M.S. (eds.) In the book Partial Differential Equations, vol. IX. Springer, Berlin (2010)

    Google Scholar 

  2. Agranovich, M.S., Vishik, M.I.: Elliptic problems with a parameter and parabolic problems of general type. Russ. Math. Surv. 19(3), 53–157 (1964)

    Article  MathSciNet  Google Scholar 

  3. Amann, H.: Uniformly regular and singular Riemannian manifolds. In: Elliptic and parabolic equations. Springer Proceedings of Mathematical Statistical, vol. 119, pp. 1–43. Springer, Cham (2015)

    Google Scholar 

  4. Arrizabalaga, N., Le Treust, L., Raymond, N.: On the MIT Bag Model in the Non- relativistic Limit. Commun. Math. Phys. 354, 641–669 (2017)

    Article  MathSciNet  Google Scholar 

  5. Arrizabalaga, N., Le Treust, L., Mas, A., Raymond, N.: The MIT Bag Model as an infinite mass limit. J. de l’École Polytechnique Mathématiques Tome 6, 329–365 (2019)

    Article  MathSciNet  Google Scholar 

  6. Behrndt, J., Holzmann, M., Mas, A.: Self-Adjoint Dirac Operators on Domains in \(\mathbb {R}^{3}\). Ann. Henri Poincar e Online First 2020 the author(s). https://doi.org/10.1007/s00023-020-00925-1

  7. Benguria, R.D., Fournais, S., Stockmeyer, E., Van Den Bosch, H.: Self-adjointness of two-dimensional Dirac operators on domains. Ann. Henri Poincar e 18(4), 1371–1383 (2017)

    Article  MathSciNet  Google Scholar 

  8. Benguria, R.D., Fournais, S., Stockmeyer, E., Van Den Bosch, H.: Spectral gaps of Dirac operators describing graphene quantum dots. Math. Phys. Anal. Geom. 20(2), 12 (2017)

    Article  MathSciNet  Google Scholar 

  9. Birman, M.Sh., Solomjak, M.: Spectral theory of selfadjoint operators in Hilbert spaces. Reidel, Dordrecht (1987)

    Book  Google Scholar 

  10. Bör, C., Ballmann, W.: Boundary value problems for elliptic differential operators of first order. In: Surveys in differential geometry, vol. XVII. Surveys Differential Geometry, vol. 17, pp. 1–78. International Press, Boston, MA (2012)

    Google Scholar 

  11. Bör, C., Ballmann, W.: Guide to Elliptic boundary value problems for Dirac-type operators, pp. 43–80. Springer, Cham (2016)

    Google Scholar 

  12. Booß-Bavnbek, B., Wojciechowski, K.: Elliptic boundary problems for Dirac operators. Springer Science+Business Media, LLC (1993)

    Google Scholar 

  13. Booß-Bavnbek, B., Lesch, M., Zhu, C.: The Calderón projection: new definition and applications. J. Geom. Phys. 59(7), 784–826 (2009)

    Article  MathSciNet  Google Scholar 

  14. Chodos, A.: Field-theoretic Lagrangian with baglike solutions. Phys. Rev. D (3) 12(8), 2397–2406 (1975)

    Google Scholar 

  15. Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: New extended model of hadrons. Phys. Rev. D (3) 9(12), 3471–3495 (1974)

    Google Scholar 

  16. Gilkey, P.B.: Invariance theory, the heat equation, and the Atiyah-Singer index theorem, seconded. CRC Press, New York (1994)

    Google Scholar 

  17. Gohberg, I., Leiterer, J.: Holomorphic operator functions of one variable and applications. In: Operator theory: advances and applications, vol. 192. Birkhäuser, Basel (2009)

    Google Scholar 

  18. Grosse, N., Nistor, V.: Uniform Shapiro-Lopatinski conditions and boundary value problems on manifolds with bounded geometry. Potential Anal. 53, 407–447 (2020)

    Article  MathSciNet  Google Scholar 

  19. Hecht, K.T.: Quantum mechanics. In: Springer Science+Business Media, LLC (2000)

    Google Scholar 

  20. Hijazi, O., Montiel, S., Roldán, A.: Eigenvalue boundary problems for the Dirac operator. Comm. Math. Phys. 231(3),375–390 (2002)

    Article  MathSciNet  Google Scholar 

  21. Johnson, K.: The MIT bag model. Acta Phys. Pol., B 6, 865–892 (1975)

    Google Scholar 

  22. Kravchenko, V., Shapiro, M.: Integral representations for spatial models of mathmatical physics. CRC Press, Longman (1996)

    Google Scholar 

  23. Lions, J.L., Magenes, E.: Non-Homogeneous boundary value problems and applications, vol. 1. Springer, Berlin (1972)

    Book  Google Scholar 

  24. Mitrea, M.: Generalized Dirac operators on nonsmooth manifolds and Maxwell’s equations. J. Fourier Anal. Appl. 7, 207–556 (2001)

    Article  MathSciNet  Google Scholar 

  25. Ourmiéres-Bonafos, T., Vega, L.: A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and δ-shell interactions. Publ. Mat. 62, 397–437 (2018)

    Article  MathSciNet  Google Scholar 

  26. Thaller, B.: The Dirac equation. In: Texts and Monographs in Physics. Springer, Berlin (1992)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the project «CF-MG-20191002094059711-15022» and Mexican National System of Researchers (SNI).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabinovich, V. (2021). Boundary Value Problems for 3D-Dirac Operators and MIT Bag Model. In: Karapetyants, A.N., Kravchenko, V.V., Liflyand, E., Malonek, H.R. (eds) Operator Theory and Harmonic Analysis. OTHA 2020. Springer Proceedings in Mathematics & Statistics, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-030-77493-6_28

Download citation

Publish with us

Policies and ethics