Skip to main content

Abstract

The twentieth century was characterized by great discoveries in medical sciences, which enhanced our knowledge of mechanisms of disease and allowed for the development of pharmacological therapies. During the same period, striking advances were accomplished in the pain field, particularly after the introduction of the concept of pain as a complex phenomenon rather than a simple sensation or a mere symptom. Moreover, at least part of the brain mechanisms related to such a complex experience has been revealed over the last decades with the advance of the neuroimaging field. Nonetheless, adequate pain control, especially in chronic pain patients, is still considered a challenge for clinicians worldwide. In this context, tDCS emerges as a promising mode to provide noninvasive modulation of dysfunctional neural networks present in chronic pain. Indeed, the results of several studies suggest that tDCS can produce long-lasting pain relief in different chronic pain syndromes, including migraine, fibromyalgia, and neuropathic pain. Nevertheless, it is still necessary to establish the most suitable protocols for each chronic pain disorder. Moreover, it is imperative to reveal the neuromechanisms related to tDCS-induced analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishman S, Ballantyne J, Rathmell JP, Bonica JJ. Bonica’s management of pain. Lippincott: Williams & Wilkins; 2010.

    Google Scholar 

  2. Melzack R, Casey KL. Sensory, motivational, and central control determinants of pain: a new conceptual model. In: Kenshalo D, editor. The skin senses. Springfield, IL: Charles C Thomas; 1968. p. 423–39.

    Google Scholar 

  3. Merskey H, Bogduk N. International Association for the Study of P. classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. Seattle: IASP Press; 1994. p. xvi, 222 p.

    Google Scholar 

  4. Verhaak PF, Kerssens JJ, Dekker J, Sorbi MJ, Bensing JM. Prevalence of chronic benign pain disorder among adults: a review of the literature. Pain. 1998;77(3):231–9.

    Article  PubMed  Google Scholar 

  5. Elliott AM, Smith BH, Hannaford PC, Smith WC, Chambers WA. The course of chronic pain in the community: results of a 4-year follow-up study. Pain. 2002;99(1–2):299–307.

    Article  CAS  PubMed  Google Scholar 

  6. Elliott AM, Smith BH, Penny KI, Smith WC, Chambers WA. The epidemiology of chronic pain in the community. Lancet. 1999;354(9186):1248–52.

    Article  CAS  PubMed  Google Scholar 

  7. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10(4):287–333.

    Article  PubMed  Google Scholar 

  8. Patel AS, Farquharson R, Carroll D, Moore A, Phillips CJ, Taylor RS, et al. The impact and burden of chronic pain in the workplace: a qualitative systematic review. Pain Pract. 2012;12(7):578–89.

    Article  PubMed  Google Scholar 

  9. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McMahon SB. Wall and Melzack’s textbook of pain. 6th ed. Philadelphia: Elsevier/Saunders; 2013. p. xxix, 1153 p.

    Google Scholar 

  11. Dworkin RH, Jensen MP, Gammaitoni AR, Olaleye DO, Galer BS. Symptom profiles differ in patients with neuropathic versus non-neuropathic pain. J Pain. 2007;8(2):118–26.

    Article  PubMed  Google Scholar 

  12. Jensen MP, Dworkin RH, Gammaitoni AR, Olaleye DO, Oleka N, Galer BS. Assessment of pain quality in chronic neuropathic and nociceptive pain clinical trials with the Neuropathic Pain Scale. J Pain. 2005;6(2):98–106.

    Article  PubMed  Google Scholar 

  13. Schwenkreis P, Scherens A, Rönnau AK, Höffken O, Tegenthoff M, Maier C. Cortical disinhibition occurs in chronic neuropathic, but not in chronic nociceptive pain. BMC Neurosci. 2010;11:73.

    Article  PubMed  PubMed Central  Google Scholar 

  14. von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012;73(4):638–52.

    Article  Google Scholar 

  15. Largus S. De compositionibus medicamentorum. Minerva Med. 1529;53:2398–402.

    Google Scholar 

  16. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol. 1991;14(1):131–4.

    Article  CAS  PubMed  Google Scholar 

  17. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl (Wien). 1991;52:137–9.

    Article  CAS  Google Scholar 

  18. Nguyen JP, Nizard J, Keravel Y, Lefaucheur JP. Invasive brain stimulation for the treatment of neuropathic pain. Nat Rev Neurol. 2011;7(12):699–709.

    Article  CAS  PubMed  Google Scholar 

  19. Lende RA, Kirsch WM, Druckman R. Relief of facial pain after combined removal of precentral and postcentral cortex. J Neurosurg. 1971;34(4):537–43.

    Article  CAS  PubMed  Google Scholar 

  20. White JC, Sweet WH. Pain and the neurosurgeon; a forty-year experience. Springfield: C. C. Thomas; 1969. p. xxxi, 1000 p.

    Google Scholar 

  21. Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP. Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport. 2001;12(13):2963–5.

    Article  CAS  PubMed  Google Scholar 

  22. Meyerson BA, Lindblom U, Linderoth B, Lind G, Herregodts P. Motor cortex stimulation as treatment of trigeminal neuropathic pain. Acta Neurochir Suppl (Wien). 1993;58:150–3.

    CAS  Google Scholar 

  23. Nguyen JP, Lefaucheur JP, Decq P, Uchiyama T, Carpentier A, Fontaine D, et al. Chronic motor cortex stimulation in the treatment of central and neuropathic pain. Correlations between clinical, electrophysiological and anatomical data. Pain. 1999;82(3):245–51.

    Article  PubMed  Google Scholar 

  24. Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122(1–2):197–209.

    Article  PubMed  Google Scholar 

  25. Fregni F, Gimenes R, Valle A, Ferreira M, Rocha R, Natalle L, et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54(12):3988–98.

    Article  PubMed  Google Scholar 

  26. Lefaucheur JP, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 2006;67(9):1568–74.

    Article  CAS  PubMed  Google Scholar 

  27. Lee SJ, Kim DY, Chun MH, Kim YG. The effect of repetitive transcranial magnetic stimulation on fibromyalgia: a randomized sham-controlled trial with 1-mo follow-up. Am J Phys Med Rehabil. 2012;91(12):1077–85.

    Article  PubMed  Google Scholar 

  28. Picarelli H, Teixeira MJ, de Andrade DC, Myczkowski ML, Luvisotto TB, Yeng LT, et al. Repetitive transcranial magnetic stimulation is efficacious as an add-on to pharmacological therapy in complex regional pain syndrome (CRPS) type I. J Pain. 2010;11(11):1203–10.

    Article  PubMed  Google Scholar 

  29. O’Connell NE, Wand BM, Marston L, Spencer S, Desouza LH. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2014;4:CD008208.

    Google Scholar 

  30. Kessler SK, Turkeltaub PE, Benson JG, Hamilton RH. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul. 2012;5(2):155–62.

    Article  PubMed  Google Scholar 

  31. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol. 2003;56:255–76.

    Article  PubMed  Google Scholar 

  32. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Group SoTC. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fregni F, Boggio P, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30.

    Article  PubMed  Google Scholar 

  34. Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A. Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol. 2002;113(1):101–7.

    Article  PubMed  Google Scholar 

  35. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9(10):2257–60.

    Article  CAS  PubMed  Google Scholar 

  36. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riberto M, Marcon Alfieri F, et al. Efficacy of transcranial direct current stimulation coupled with a multidisciplinary rehabilitation program for the treatment of fibromyalgia. Open Rheumatol J. 2011;5:45–50.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mendonca ME, Santana MB, Baptista AF, Datta A, Bikson M, Fregni F, et al. Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models. J Pain. 2011;12(5):610–7.

    Article  PubMed  Google Scholar 

  39. Villamar MF, Wivatvongvana P, Patumanond J, Bikson M, Truong DQ, Datta A, et al. Focal modulation of the primary motor cortex in fibromyalgia using 4 × 1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation. J Pain. 2013;14(4):371–83.

    Article  PubMed  Google Scholar 

  40. Valle A, Roizenblatt S, Botte S, Zaghi S, Riberto M, Tufik S, et al. Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: results of a randomized, sham-controlled longitudinal clinical trial. J Pain Manage. 2009;2(3):353–61.

    Google Scholar 

  41. Soler MD, Kumru H, Pelayo R, Vidal J, Tormos JM, Fregni F, et al. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain. 2010;133(9):2565–77.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jensen MP, Sherlin LH, Askew RL, Fregni F, Witkop G, Gianas A, et al. Effects of non-pharmacological pain treatments on brain states. Clin Neurophysiol. 2013;124(10):2016–24.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wrigley PJ, Gustin SM, McIndoe LN, Chakiath RJ, Henderson LA, Siddall PJ. Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial. Pain. 2013;154(10):2178–84.

    Article  PubMed  Google Scholar 

  44. Fenton BW, Palmieri PA, Boggio P, Fanning J, Fregni F. A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain Stimul. 2009;2(2):103–7.

    Article  PubMed  Google Scholar 

  45. Antal A, Paulus W. A case of refractory orofacial pain treated by transcranial direct current stimulation applied over hand motor area in combination with NMDA agonist drug intake. Brain Stimul. 2011;4(2):117–21.

    Article  PubMed  Google Scholar 

  46. DosSantos MF, Love TM, Martikainen IK, Nascimento TD, Fregni F, Cummiford C, et al. Immediate effects of tDCS on the μ-opioid system of a chronic pain patient. Front Psych. 2012;3:93.

    Google Scholar 

  47. Kim YJ, Ku J, Kim HJ, Im DJ, Lee HS, Han KA, et al. Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy. Ann Rehabil Med. 2013;37(6):766–76.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Portilla AS, Bravo GL, Miraval FK, Villamar MF, Schneider JC, Ryan CM, et al. A feasibility study assessing cortical plasticity in chronic neuropathic pain following burn injury. J Burn Care Res. 2013;34(1):e48–52.

    Article  PubMed  Google Scholar 

  49. Boggio PS, Amancio EJ, Correa CF, Cecilio S, Valasek C, Bajwa Z, et al. Transcranial DC stimulation coupled with TENS for the treatment of chronic pain: a preliminary study. Clin J Pain. 2009;25(8):691–5.

    Article  PubMed  Google Scholar 

  50. Hagenacker T, Bude V, Naegel S, Holle D, Katsarava Z, Diener HC, et al. Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J Headache Pain. 2014;15:78.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schabrun SM, Jones E, Elgueta Cancino EL, Hodges PW. Targeting chronic recurrent low back pain from the top-down and the bottom-up: a combined transcranial direct current stimulation and peripheral electrical stimulation intervention. Brain Stimul. 2014;7(3):451–9.

    Article  PubMed  Google Scholar 

  52. Dasilva AF, Mendonca ME, Zaghi S, Lopes M, Dossantos MF, Spierings EL, et al. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache. 2012;52(8):1283–95.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Antal A, Kriener N, Lang N, Boros K, Paulus W. Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine. Cephalalgia. 2011;31(7):820–8.

    Article  PubMed  Google Scholar 

  54. Viganò A, D’Elia TS, Sava SL, Auvé M, De Pasqua V, Colosimo A, et al. Transcranial Direct Current Stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain. 2013;14(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Donnell A, D Nascimento T, Lawrence M, Gupta V, Zieba T, Truong DQ, et al. High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD. Brain Stimul. 2015;8(6):1085–92.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vaseghi B, Zoghi M, Jaberzadeh S. Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clin Neurophysiol. 2014;125(9):1847–58.

    Article  CAS  PubMed  Google Scholar 

  57. Wood L, Egger M, Gluud LL, Schulz KF, Jüni P, Altman DG, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ. 2008;336(7644):601–5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA. Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry. 2001;49(5):460–3.

    Article  CAS  PubMed  Google Scholar 

  59. Loo CK, Taylor JL, Gandevia SC, McDarmont BN, Mitchell PB, Sachdev PS. Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some “sham” forms active? Biol Psychiatry. 2000;47(4):325–31.

    Article  CAS  PubMed  Google Scholar 

  60. Sommer J, Jansen A, Dräger B, Steinsträter O, Breitenstein C, Deppe M, et al. Transcranial magnetic stimulation–a sandwich coil design for a better sham. Clin Neurophysiol. 2006;117(2):440–6.

    Article  PubMed  Google Scholar 

  61. Ambrus GG, Al-Moyed H, Chaieb L, Sarp L, Antal A, Paulus W. The fade-in–short stimulation–fade out approach to sham tDCS–reliable at 1 mA for naïve and experienced subjects, but not investigators. Brain Stimul. 2012;5(4):499–504.

    Article  PubMed  Google Scholar 

  62. Gandiga P, Hummel F, Cohen L. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50.

    Article  PubMed  Google Scholar 

  63. O’Connell NE, Cossar J, Marston L, Wand BM, Bunce D, Moseley GL, et al. Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA. PLoS One. 2012;7(10):e47514.

    Article  PubMed  PubMed Central  Google Scholar 

  64. DaSilva AF, Volz MS, Bikson M, Fregni F. Electrode positioning and montage in transcranial direct current stimulation. J Vis Exp. 2011;51:2744.

    Google Scholar 

  65. Mylius V, Borckardt JJ, Lefaucheur JP. Noninvasive cortical modulation of experimental pain. Pain. 2012;153(7):1350–63.

    Article  PubMed  Google Scholar 

  66. Siniatchkin M, Sendacki M, Moeller F, Wolff S, Jansen O, Siebner H, et al. Abnormal changes of synaptic excitability in migraine with aura. Cereb Cortex. 2012;22(10):2207–16.

    Article  PubMed  Google Scholar 

  67. Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208–14.

    Article  PubMed  Google Scholar 

  68. DaSilva AF, Truong DQ, DosSantos MF, Toback RL, Datta A, Bikson M. State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control. Front Neuroanat. 2015;9:89.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Villamar MF, Volz MS, Bikson M, Datta A, Dasilva AF, Fregni F. Technique and considerations in the use of 4 × 1 ring high-definition transcranial direct current stimulation (HD-tDCS). J Vis Exp. 2013;77:e50309.

    Google Scholar 

  70. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7, 7.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sehm B, Kipping J, Schäfer A, Villringer A, Ragert P. A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex. Front Hum Neurosci. 2013;7:183.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901.

    Article  CAS  PubMed  Google Scholar 

  73. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Granziera C, DaSilva AF, Snyder J, Tuch DS, Hadjikhani N. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med. 2006;3(10):e402.

    Article  PubMed  PubMed Central  Google Scholar 

  75. DaSilva AF, Granziera C, Snyder J, Hadjikhani N. Thickening in the somatosensory cortex of patients with migraine. Neurology. 2007;69(21):1990–5.

    Article  PubMed  Google Scholar 

  76. DaSilva AF, Becerra L, Pendse G, Chizh B, Tully S, Borsook D. Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS One. 2008;3(10):e3396.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim J, Suh S, Seol H, Oh K, Seo W, Yu S, et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia. 2008;28(6):598–604.

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt-Wilcke T, Luerding R, Weigand T, Jürgens T, Schuierer G, Leinisch E, et al. Striatal grey matter increase in patients suffering from fibromyalgia–a voxel-based morphometry study. Pain. 2007;132(Suppl 1):S109–16.

    Article  PubMed  Google Scholar 

  79. Lutz J, Jäger L, de Quervain D, Krauseneck T, Padberg F, Wichnalek M, et al. White and gray matter abnormalities in the brain of patients with fibromyalgia: a diffusion-tensor and volumetric imaging study. Arthritis Rheum. 2008;58(12):3960–9.

    Article  PubMed  Google Scholar 

  80. Gustin SM, Peck CC, Wilcox SL, Nash PG, Murray GM, Henderson LA. Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J Neurosci. 2011;31(16):5956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Youssef AM, Gustin SM, Nash PJ, Reeves JM, Petersen ET, Peck CC, et al. Differential brain activity in subjects with painful trigeminal neuropathy and painful temporomandibular disorder. Pain. 2013;155(3):467–75.

    Article  PubMed  Google Scholar 

  82. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol. 2011;70(5):838–45.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98(8):4687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner F, Garcia RG, et al. The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction. Arthritis Rheumatol. 2015;67(5):1395–405.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Napadow V, Harris RE. What has functional connectivity and chemical neuroimaging in fibromyalgia taught us about the mechanisms and management of ‘centralized’ pain? Arthritis Res Ther. 2014;16(5):425.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ichesco E, Schmidt-Wilcke T, Bhavsar R, Clauw DJ, Peltier SJ, Kim J, et al. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J Pain. 2014;15(8):815–26, e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK. Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci. 2007;27(37):10000–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dossantos MF, Martikainen IK, Nascimento TD, Love TM, Deboer MD, Maslowski EC, et al. Reduced basal ganglia mu-opioid receptor availability in trigeminal neuropathic pain: a pilot study. Mol Pain. 2012;8(1):74.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Martikainen IK, Nuechterlein EB, Peciña M, Love TM, Cummiford CM, Green CR, et al. Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J Neurosci. 2015;35(27):9957–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. DaSilva AF, Nascimento TD, DosSantos MF, Lucas S, van HolsbeecK H, DeBoer M, et al. Association of μ-opioid activation in the prefrontal cortex with spontaneous migraine attacks – brief report I. Ann Clin Transl Neurol. 2014;1(6):439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nascimento TD, DosSantos MF, Lucas S, van Holsbeeck H, DeBoer M, Maslowski E, et al. μ-Opioid activation in the midbrain during migraine allodynia – brief report II. Ann Clin Transl Neurol. 2014;1(6):445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(Pt 10):2238–47.

    Article  PubMed  Google Scholar 

  93. Foerster BR, Nascimento TD, DeBoer M, Bender MA, Rice IC, Truong DQ, et al. Excitatory and inhibitory brain metabolites as targets of motor cortex transcranial direct current stimulation therapy and predictors of its efficacy in fibromyalgia. Arthritis Rheumatol. 2015;67(2):576–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study. Neurosci Lett. 2011;500(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  95. DosSantos MF, Martikainen IK, Nascimento TD, Love TM, DeBoer MD, Schambra HM, et al. Building up analgesia in humans via the endogenous μ-opioid system by combining placebo and active tDCS: a preliminary report. PLoS One. 2014;9(7):e102350.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wager TD, Scott DJ, Zubieta JK. Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A. 2007;104(26):11056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zubieta JK, Stohler CS. Neurobiological mechanisms of placebo responses. Ann N Y Acad Sci. 2009;1156:198–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wolfe F, Ross K, Anderson J, Russell IJ, Hebert L. The prevalence and characteristics of fibromyalgia in the general population. Arthritis Rheum. 1995;38(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  99. McBeth J, Jones K. Epidemiology of chronic musculoskeletal pain. Best Pract Res Clin Rheumatol. 2007;21(3):403–25.

    Article  PubMed  Google Scholar 

  100. Vincent A, Lahr BD, Wolfe F, Clauw DJ, Whipple MO, Oh TH, et al. Prevalence of fibromyalgia: a population-based study in Olmsted County, Minnesota, utilizing the Rochester Epidemiology Project. Arthritis Care Res (Hoboken). 2013;65(5):786–92.

    Article  Google Scholar 

  101. Wolfe F, Smythe HA, Yunus MB, Bennett RM, Bombardier C, Goldenberg DL, et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. Report of the multicenter criteria committee. Arthritis Rheum. 1990;33(2):160–72.

    Article  CAS  PubMed  Google Scholar 

  102. Clauw DJ. Fibromyalgia: a clinical review. JAMA. 2014;311(15):1547–55.

    Article  PubMed  Google Scholar 

  103. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Häuser W, Katz RS, et al. Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. J Rheumatol. 2011;38(6):1113–22.

    Article  PubMed  Google Scholar 

  104. Williams DA, Clauw DJ. Understanding fibromyalgia: lessons from the broader pain research community. J Pain. 2009;10(8):777–91.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Foerster BR, Petrou M, Harris RE, Barker PB, Hoeffner EG, Clauw DJ, et al. Cerebral blood flow alterations in pain-processing regions of patients with fibromyalgia using perfusion MR imaging. AJNR Am J Neuroradiol. 2011;32(10):1873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Foerster BR, Petrou M, Edden RA, Sundgren PC, Schmidt-Wilcke T, Lowe SE, et al. Reduced insular γ-aminobutyric acid in fibromyalgia. Arthritis Rheum. 2012;64(2):579–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Albrecht DS, MacKie PJ, Kareken DA, Hutchins GD, Chumin EJ, Christian BT, et al. Differential dopamine function in fibromyalgia. Brain Imaging Behav. 2015;10(3):829–39.

    Article  Google Scholar 

  108. Napadow V, Kim J, Clauw DJ, Harris RE. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 2012;64(7):2398–403.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Antal A, Terney D, Kühnl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J Pain Symptom Manag. 2010;39(5):890–903.

    Article  Google Scholar 

  110. (IHS) HCCotIHS. The international classification of headache disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808.

    Article  Google Scholar 

  111. Stovner L, Hagen K, Jensen R, Katsarava Z, Lipton R, Scher A, et al. The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia. 2007;27(3):193–210.

    Article  PubMed  Google Scholar 

  112. Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain. 2000;123(Pt 8):1703–9.

    Article  PubMed  Google Scholar 

  113. Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47(5):614–24.

    Article  CAS  PubMed  Google Scholar 

  114. Lovati C, D’Amico D, Bertora P. Allodynia in migraine: frequent random association or unavoidable consequence? Expert Rev Neurother. 2009;9(3):395–408.

    Article  PubMed  Google Scholar 

  115. Lipton RB, Bigal ME, Ashina S, Burstein R, Silberstein S, Reed ML, et al. Cutaneous allodynia in the migraine population. Ann Neurol. 2008;63(2):148–58.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bigal ME, Ashina S, Burstein R, Reed ML, Buse D, Serrano D, et al. Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology. 2008;70(17):1525–33.

    Article  CAS  PubMed  Google Scholar 

  117. Burstein R. Deconstructing migraine headache into peripheral and central sensitization. Pain. 2001;89(2–3):107–10.

    Article  CAS  PubMed  Google Scholar 

  118. Dodick D, Silberstein S. Central sensitization theory of migraine: clinical implications. Headache. 2006;46(Suppl 4):S182–91.

    Article  PubMed  Google Scholar 

  119. Chadaide Z, Arlt S, Antal A, Nitsche MA, Lang N, Paulus W. Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia. 2007;27(7):833–9.

    Article  CAS  PubMed  Google Scholar 

  120. Cosentino G, Brighina F, Talamanca S, Paladino P, Vigneri S, Baschi R, et al. Reduced threshold for inhibitory homeostatic responses in migraine motor cortex? A tDCS/TMS study. Headache. 2014;54(4):663–74.

    Article  PubMed  Google Scholar 

  121. Rocha S, Melo L, Boudoux C, Foerster Á, Araújo D, Monte-Silva K. Transcranial direct current stimulation in the prophylactic treatment of migraine based on interictal visual cortex excitability abnormalities: a pilot randomized controlled trial. J Neurol Sci. 2015;349(1–2):33–9.

    Article  PubMed  Google Scholar 

  122. Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol. 2014;13(9):924–35.

    Article  PubMed  Google Scholar 

  123. Jensen TS, Baron R, Haanpää M, Kalso E, Loeser JD, Rice AS, et al. A new definition of neuropathic pain. Pain. 2011;152(10):2204–5.

    Article  PubMed  Google Scholar 

  124. Hall G, Carroll D, Parry D, McQuay H. Epidemiology and treatment of neuropathic pain: the UK primary care perspective. Pain. 2006;122(1–2):156–62.

    Article  PubMed  Google Scholar 

  125. Bouhassira D, Lantéri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain. 2008;136(3):380–7.

    Article  PubMed  Google Scholar 

  126. Turk DC. Clinical effectiveness and cost-effectiveness of treatments for patients with chronic pain. Clin J Pain. 2002;18(6):355–65.

    Article  PubMed  Google Scholar 

  127. Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML, et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc. 2010;85(3 Suppl):S3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jensen MP, Chodroff MJ, Dworkin RH. The impact of neuropathic pain on health-related quality of life: review and implications. Neurology. 2007;68(15):1178–82.

    Article  PubMed  Google Scholar 

  129. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Chronic motor cortex stimulation in patients with thalamic pain. J Neurosurg. 1993;78(3):393–401.

    Article  CAS  PubMed  Google Scholar 

  132. Ngernyam N, Jensen MP, Arayawichanon P, Auvichayapat N, Tiamkao S, Janjarasjitt S, et al. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury. Clin Neurophysiol. 2015;126(2):382–90.

    Article  PubMed  Google Scholar 

  133. Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, et al. Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain. 2013;154(11):2563–8.

    Article  CAS  PubMed  Google Scholar 

  134. Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, et al. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology. 2007;69(9):827–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre F. DaSilva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DaSilva, A.F., DosSantos, M.F. (2021). Pain Syndromes. In: Brunoni, A.R., Nitsche, M.A., Loo, C.K. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-76136-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76136-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76135-6

  • Online ISBN: 978-3-030-76136-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics