Skip to main content

Environment Monitoring Modules with Fire Detection Capability Based on IoT Methodology

  • Conference paper
  • First Online:
Science and Technologies for Smart Cities (SmartCity360° 2020)

Abstract

Worldwide, forests have been devastated by fires in recent years. Whe- ther by human intervention or for other reasons, the history of burned areas is increasing year after year, degrading fauna and flora. For this reason, it is vital to detect an early ignition so that firefighters can act quickly, reducing the impacts caused by forest fires. The proposed system aims to improve the nature monitoring and to assist the existing surveillance systems through Wireless Sensor Network. The network formed by the set of sensors has the potential to identify forest ignitions and, consequently, alerts the authorities through LoRaWAN communication. This work presents a prototype based on low-cost technology, which can be used in areas that require a high density of modules. Tests with a Wireless Sensor Network made up of nine prototypes demonstrate its effectiveness and robustness in terms of data transmission and collection. In this way, it is possible to apply this approach in Portuguese forests with a high level of forest fire risk, transforming them into Forests 4.0 concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amraoui, M., Pereira, M.G., DaCamara, C.C., Calado, T.J.: Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Sci. Total Environ. 524, 32–39 (2015)

    Article  Google Scholar 

  2. Pereira, M.G., Calado, T.J., DaCamara, C.C., Calheiros, T.: Effects of regional climate change on rural fires in Portugal. Climate Res. 57(3), 187–200 (2013)

    Article  Google Scholar 

  3. ICNF - 6.\(^\circ \) Relatório Provisório de Incêndios Rurais - 2018: 01 de Janeiro a 15 de Setembro. http://www2.icnf.pt/portal/florestas/dfci/Resource/doc/rel/2018/6-RIR-1jan-15set2018. Accessed 14 Sept 2020

  4. Sistemas de Videovigilância de Prevenção de Incêndios a Partir de 2017 com apoio PO SEUR. https://poseur.portugal2020.pt/media/4140/plano_nacional_defesa_floresta_contra_incendios.pdf. Accessed 14 Sept 2020

  5. Lloret, J., Garcia, M., Bri, D., Sendra, S.: A wireless sensor network deployment for rural and forest fire detection and verification. Sensors 9(11), 8722–8747 (2009)

    Article  Google Scholar 

  6. ICNF - Plano Nacional de Defesa da Floresta Contra Incêndios. http://www2.icnf.pt/portal/florestas/dfci/planos/PNDFCI. Accessed 14 Sept 2020

  7. Rego, F.C., et al.: Análise da Rede Nacional de Postos de Vigia em Portugal. Relatório Final do Projecto. ADISA/CEABN-INESC/INOVAÇÃO. Iniciativa Incêndios Florestais, COTEC Portugal (2004)

    Google Scholar 

  8. Catry, F.X., Rego, F.C., Bação, F.L., Moreira, F.: Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 18(8), 921–931 (2010)

    Article  Google Scholar 

  9. Silva, J.S., Rego, F.C., Fernandes, P., Rigolot, E.: Towards integrated fire management. Outcomes of the European Project Fire Paradox (2010)

    Google Scholar 

  10. Catry, F. X., Moreira, F., Pausas, J. G., Fernandes, P. M., Rego, F.: Cork Oak Vulnerability to Fire: The Role of Bark Harvesting. Tree Characteristics and (2012)

    Google Scholar 

  11. Marques, S., et al.: Assessing wildfire occurrence probability in Pinus pinaster Ait. stands in Portugal. Forest Syst. 21, 111–120 (2012)

    Article  Google Scholar 

  12. Kaur, H., Sood, S.K.: Soft-computing-centric framework for wildfire monitoring, prediction and forecasting. Soft. Comput. 24(13), 9651–9661 (2020)

    Article  Google Scholar 

  13. Sahin, Y. G.: A sensor selection model in simultaneous monitoring of multiple types of disaster. In Geospatial Informatics IX (Vol. 10992, p. 109920C). International Society for Optics and Photonics (2019)

    Google Scholar 

  14. Fukuhara, T., Kouyama, T., Kato, S., Nakamura, R., Takahashi, Y., Akiyama, H.: Detection of small wildfire by thermal infrared camera with the uncooled microbolometer array for 50-kg class satellite. IEEE Trans. Geosci. Remote Sens. 55(8), 4314–4324 (2017)

    Article  Google Scholar 

  15. Kyzirakos, K., et al.: Wildfire monitoring using satellite images, ontologies and linked geospatial data. J. Web Semant. 24, 18–26 (2014)

    Article  Google Scholar 

  16. Aslan, Y.E., Korpeoglu, I., Ulusoy, Ö.: A framework for use of wireless sensor networks in forest fire detection and monitoring. Comput. Environ. Urban Syst. 36(6), 614–625 (2012)

    Article  Google Scholar 

  17. Relvas, P., Almeida, J., Rego, F. C., Catry, F.: Estudo para implementação de um sistema de videovigilância florestal no Distrito de Viseu. In Silva, R., Páscoa, F. (eds.) Actas do 5\(^\circ \) Congresso Florestal (2005)

    Google Scholar 

  18. Verde, J.C., Zêzere, J.L.: Assessment and validation of wildfire susceptibility and hazard in Portugal. Nat. Hazards Earth Syst. Sci. 10(3) (2010)

    Google Scholar 

  19. Verde, J. C.: Wildfire susceptibility modelling in mainland Portugal (Doctoral dissertation, Universidade de Lisboa (Portugal)) (2015)

    Google Scholar 

  20. Müller, F., Jaeger, D., Hanewinkel, M.: Digitization in wood supply-a review on how Industry 4.0 will change the forest value chain. Comput. Electron. Agricult. 162, 206–218 (2019)

    Google Scholar 

  21. Ghobakhloo, M.: Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 252, 119869 (2020)

    Google Scholar 

  22. LAD Sensors https://www.ladsensors.com/. Accessed 14 Sept 2020

  23. Brito, T., Pereira, A.I., Lima, J., Valente, A.: Wireless sensor network for ignitions detection: an IoT approach. Electronics 9(6), 893 (2020)

    Article  Google Scholar 

  24. Brito, T., Pereira, A. I., Lima, J., Castro, J. P., Valente, A.: Optimal sensors positioning to detect forest fire ignitions. In: Proceedings of the 9th International Conference on Operations Research and Enterprise Systems, pp. 411–418 (2020)

    Google Scholar 

  25. Payne, E.K., Lu, S., Wang, Q., Wu, L.: Concept of Designing Thermal Condition Monitoring System with ZigBee/GSM Communication Link for Distributed Energy Resources Network in Rural and Remote Applications. Processes 7(6), 383 (2019)

    Article  Google Scholar 

  26. ATmega328p - Microchip. http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf. Accessed 14 Sept 2020

  27. Singh, A., Singh, G.: Review on temperature & humidity sensing using IoT. Int. J. Adv. Res. Comput. Sci. Software Eng. 6(2), 234–240 (2016)

    Google Scholar 

  28. RFM95 and RFM96 - Hope RF. https://www.hoperf.com/data/upload/portal/20190801/RFM95W-V2.0.pdf. Accessed 14 Sept 2020

Download references

Acknowledgements

This work has been supported by Fundação La Caixa and FCT—Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/5757/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thadeu Brito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brito, T., Azevedo, B.F., Valente, A., Pereira, A.I., Lima, J., Costa, P. (2021). Environment Monitoring Modules with Fire Detection Capability Based on IoT Methodology. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76063-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76062-5

  • Online ISBN: 978-3-030-76063-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics