Skip to main content

CLIP: Cheap Lipschitz Training of Neural Networks

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12679))

Abstract

Despite the large success of deep neural networks (DNN) in recent years, most neural networks still lack mathematical guarantees in terms of stability. For instance, DNNs are vulnerable to small or even imperceptible input perturbations, so called adversarial examples, that can cause false predictions. This instability can have severe consequences in applications which influence the health and safety of humans, e.g., biomedical imaging or autonomous driving. While bounding the Lipschitz constant of a neural network improves stability, most methods rely on restricting the Lipschitz constants of each layer which gives a poor bound for the actual Lipschitz constant.

In this paper we investigate a variational regularization method named CLIP for controlling the Lipschitz constant of a neural network, which can easily be integrated into the training procedure. We mathematically analyze the proposed model, in particular discussing the impact of the chosen regularization parameter on the output of the network. Finally, we numerically evaluate our method on both a nonlinear regression problem and the MNIST and Fashion-MNIST classification databases, and compare our results with a weight regularization approach.

This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 777826 (NoMADS) and by the German Ministry of Science and Technology (BMBF) under grant agreement No. 05M2020 (DELETO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/TimRoith/CLIP.

References

  1. Anil, C., Lucas, J., Grosse, R.B.: Sorting out Lipschitz function approximation. In: ICML, vol. 97, pp. 291–301. PMLR (2019)

    Google Scholar 

  2. Anzengruber, S.W., Ramlau, R.: Morozov’s discrepancy principle for Tikhonov-type functionals with nonlinear operators. Inverse Probl. 26(2), 025001 (2009)

    Google Scholar 

  3. Aziznejad, S., Gupta, H., Campos, J., Unser, M.: Deep neural networks with trainable activations and controlled Lipschitz constant. IEEE Trans. Signal Process. 68, 4688–4699 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bungert, L., Burger, M.: Solution paths of variational regularization methods for inverse problems. Inverse Probl. 35(10), 105012 (2019)

    Google Scholar 

  5. Bungert, L., Burger, M., Korolev, Y., Schönlieb, C.B.: Variational regularisation for inverse problems with imperfect forward operators and general noise models. Inverse Probl. 36(12), 125014 (2020)

    Google Scholar 

  6. Burger, M., Osher, S.: A guide to the TV zoo. In: Level Set and PDE Based Reconstruction Methods in Imaging, vol. 2090, pp. 1–70. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01712-9_1

  7. Combettes, P.L., Pesquet, J.C.: Lipschitz certificates for layered network structures driven by averaged activation operators. SIAM J. Math. Data Sci. 2(2), 529–557 (2020)

    Article  MathSciNet  Google Scholar 

  8. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accurate estimation of Lipschitz constants for deep neural networks. In: NeurIPS (2019)

    Google Scholar 

  9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  10. Gouk, H., Frank, E., Pfahringer, B., Cree, M.J.: Regularisation of neural networks by enforcing Lipschitz continuity. Mach. Learn. 110, 1–24 (2020). https://doi.org/10.1007/s10994-020-05929-w

    Article  MathSciNet  Google Scholar 

  11. Huster, T., Chiang, C.-Y.J., Chadha, R.: Limitations of the Lipschitz constant as a defense against adversarial examples. In: Alzate, C., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11329, pp. 16–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13453-2_2

    Chapter  Google Scholar 

  12. Krishnan, V., Makdah, A.A.A., Pasqualetti, F.: Lipschitz bounds and provably robust training by Laplacian smoothing. arXiv preprint arXiv:2006.03712 (2020)

  13. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Liang, Y., Huang, D.: Large norms of CNN layers do not hurt adversarial robustness. arXiv preprint arXiv:2009.08435 (2020)

  16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)

    Google Scholar 

  17. Oberman, A.M., Calder, J.: Lipschitz regularized deep neural networks converge and generalize. arXiv preprint arXiv:1808.09540 (2018)

  18. van den Oord, A., et al.: WaveNet: a generative model for raw audio. In: The 9th ISCA Speech Synthesis Workshop, p. 125 (2016)

    Google Scholar 

  19. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model Sim. 4(2), 460–489 (2005)

    Article  MathSciNet  Google Scholar 

  20. Roth, K., Kilcher, Y., Hofmann, T.: Adversarial training is a form of data-dependent operator norm regularization. In: NeurIPS (2019)

    Google Scholar 

  21. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  22. Scaman, K., Virmaux, A.: Lipschitz regularity of deep neural networks: analysis and efficient estimation. In: NeurIPS (2018)

    Google Scholar 

  23. Schwinn, L., Raab, R., Eskofier, B.: Towards rapid and robust adversarial training with one-step attacks. arXiv preprint arXiv:2002.10097 (2020)

  24. Shafahi, A., et al.: Adversarial training for free! In: NeurIPS, pp. 3353–3364 (2019)

    Google Scholar 

  25. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  26. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014)

    Google Scholar 

  27. Terjék, D.: Adversarial Lipschitz regularization. arXiv preprint arXiv:1907.05681 (2019)

  28. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  29. Zou, D., Balan, R., Singh, M.: On Lipschitz bounds of general convolutional neural networks. IEEE Trans. Inf. Theory 66(3), 1738–1759 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Bungert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bungert, L., Raab, R., Roith, T., Schwinn, L., Tenbrinck, D. (2021). CLIP: Cheap Lipschitz Training of Neural Networks. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2021. Lecture Notes in Computer Science(), vol 12679. Springer, Cham. https://doi.org/10.1007/978-3-030-75549-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75549-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75548-5

  • Online ISBN: 978-3-030-75549-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics