Skip to main content

Knowledge Transfer in Data-Driven Evolutionary Optimization

  • Chapter
  • First Online:
Data-Driven Evolutionary Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 975))

  • 1801 Accesses

Abstract

Lack of training data is one major challenge in data-driven optimization, since data collection is either computationally expensive or costly in many data-driven optimization problems. To address this issue, this chapter presents three classes of knowledge transfer approaches in data-driven evolutionary optimization. The first approach is based on semi-supervised learning, transferring knowledge from unlabeled data to labeled data. The second approach makes use of transfer learning with the help of parameter sharing and domain adaptation, to transfer knowledge between objectives or problems. Finally, transfer optimization, a variant of multi-tasking optimization, is employed to transfer knowledge between multi-fidelity formulation or multi-scenarios of the same optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allmendinger, R., Handl, J., & Knowles, J. (2015). Multiobjective optimization: When objectives exhibit non-uniform latencies. European Journal of Operational Research, 243(2), 497–513.

    Article  MathSciNet  Google Scholar 

  • Beyer, H.-G., & Sendhoff, B. (2007). Robust optimization-a comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196(33), 3190–3218.

    Article  MathSciNet  Google Scholar 

  • Branke, J., Asafuddoula, M., Bhattacharjee, K. S., & Ray, T. (2017). Efficient use of partially converged simulations in evolutionary optimization. IEEE Transactions on Evolutionary Computation, 21(1), 52–64.

    Article  Google Scholar 

  • Cheng, R., & Jin, Y. (2015). A social learning particle swarm optimization algorithm for scalable optimization. Information Sciences, 291, 43–60.

    Article  MathSciNet  Google Scholar 

  • Cheng, R., Jin, Y., Olhofer, M., & Sendhoff, B. (2016). A reference vector guided evolutionary algorithm for many objective optimization. IEEE Transactions on Evolutionary Computation, 20(5), 773–791.

    Article  Google Scholar 

  • Chugh, T., Allmendinger, R., Ojalehto, V., & Miettinen, K. (2018a). Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 609–616). ACM.

    Google Scholar 

  • Clerc, M., & Kennedy, J. (2002). The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.

    Article  Google Scholar 

  • Cramer, A. M., Sudhoff, S. D., & Zivi, E. L. (2009). Evolutionary algorithms for minimax problems in robust design. IEEE Transactions on Evolutionary Computation, 13(2), 444–453.

    Article  Google Scholar 

  • Derrac, J., García, S., Molina, D., & Herrera, F. (2011b). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Article  Google Scholar 

  • Gupta, A., Ong, Y.-S., & Feng, L. (2018). Insights on transfer optimization: Because experience is the best teacher. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(1), 51–64.

    Article  Google Scholar 

  • Jin, Y., & Sendhoff, B. (2009). A systems approach to evolutionary multiobjective structural optimization and beyond. IEEE Computational Intelligence Magazine, 4(3), 62–76.

    Article  Google Scholar 

  • Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4), 455–492.

    Article  MathSciNet  Google Scholar 

  • Le Gratiet, L., & Garnier, J. (2014). Recursive co-kriging model for design of computer experiments with multiple levels of fidelity. International Journal for Uncertainty Quantification, 4(5),

    Google Scholar 

  • Li, H., Jin, Y., & Chai, T. (2021). Evolutionary multi-objective bayesian optimization based on online transfer learning. IEEE Transactions on Cybernetics.

    Google Scholar 

  • Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006b). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.

    Article  Google Scholar 

  • Luo, J., Gupta, A., Ong, Y.-S., & Wang, Z. (2018a). Evolutionary optimization of expensive multiobjective problems with co-sub-pareto front Gaussian process surrogates. IEEE Transactions on Cybernetics, 49(5), 1708–1721.

    Article  Google Scholar 

  • Myers, D. E. (1984). Co-kriging-new developments. In Geostatistics for natural resources characterization (pp. 295–305). Springer.

    Google Scholar 

  • Ong, Y.-S., & Gupta, A. (2016). Evolutionary multitasking: a computer science view of cognitive multitasking. Cognitive Computation, 8(2), 125–142.

    Article  Google Scholar 

  • Ong, Y.-S., Nair, P. B., & Lum, K. (2006). Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Transactions on Evolutionary Computation, 10(4), 392–404.

    Article  Google Scholar 

  • Pan, S. J., Tsang, I. W., Kwok, J. T., & Yang, Q. (2010). Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 22(2), 199–210.

    Article  Google Scholar 

  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.

    Article  Google Scholar 

  • Pardoe, D. and Stone, P. (2010). Boosting for regression transfer. In Proceedings of the 27th International Conference on International Conference on Machine Learning (pp. 863–870). Omnipress.

    Google Scholar 

  • Qiu, X., Xu, J.-X., Xu, Y., & Tan, K. C. (2018). A new differential evolution algorithm for minimax optimization in robust design. IEEE Transactions on Cybernetics, 48(5), 1355–1368.

    Article  Google Scholar 

  • Sun, X., Gong, D., Jin, Y., & Chen, S. (2013b). A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning. IEEE Transactions on Cybernetics, 43(2), 685–698.

    Article  Google Scholar 

  • Tahmoresnezhad, J., & Hashemi, S. (2017). Visual domain adaptation via transfer feature learning. Knowledge and Information Systems, 50(2), 585–605.

    Article  Google Scholar 

  • Wang, J., Chen, Y., Feng, W., Yu, H., Huang, M., and Yang, Q. (2020b). Transfer learning with dynamic distribution adaptation. ACM Transactions on Intelligent Systems and Technology, 11(1: Article No. 6).

    Google Scholar 

  • Wang, J., Chen, Y., Hao, S., Feng, W., & Shen, Z. (2017d). Balanced distribution adaptation for transfer learning. In 2017 IEEE International Conference on Data Mining (ICDM) (pp. 1129–1134). IEEE.

    Google Scholar 

  • Wang, H., Jin, Y., & Doherty, J. (2018d). A generic test suite for evolutionary multi-fidelity optimization. IEEE Transactions on Evolutionary Computation. to appear.

    Google Scholar 

  • Wang, X., Jin, Y., Schmitt, S., & Olhofer, M. (2020c). Transfer learning for gaussian process assisted evolutionary bi-objective optimization for objectives with different evaluation times. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 587–594). ACM.

    Google Scholar 

  • Wang, H., Jin, Y., Yang, C., & Jiao, L. (2020a). Transfer stacking from low-to high-fidelity: A surrogate-assisted bi-fidelity evolutionary algorithm. Applied Soft Computing (pp. 106276).

    Google Scholar 

  • Wang, H., Jin, Y., & Doherty, J. (2017a). Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Transactions on Cybernetics, 47(9), 2664–2677.

    Article  Google Scholar 

  • Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(9), 40.

    Google Scholar 

  • Yang, C., Ding, J., Jin, Y., Wang, C., & Chai, T. (2019). Multitasking multiobjective evolutionary operational indices optimization of beneficiation processes. IEEE Transactions on Automation Science and Engineering, 16(3), 1046–1057.

    Article  Google Scholar 

  • Zhou, Z., Ong, Y. S., Nair, P. B., Keane, A. J., & Lum, K. Y. (2007). Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(1), 66–76.

    Article  Google Scholar 

  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2019). A comprehensive survey on transfer learning. arXiv preprint arXiv:1911.02685.

  • Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2020). A comprehensive survey on transfer learning. Proceedings of IEEE, 109(1), 43–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaochu Jin .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, Y., Wang, H., Sun, C. (2021). Knowledge Transfer in Data-Driven Evolutionary Optimization. In: Data-Driven Evolutionary Optimization. Studies in Computational Intelligence, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-74640-7_9

Download citation

Publish with us

Policies and ethics