Skip to main content

Fuzzy Clustering Problem

  • Chapter
  • First Online:
Cluster Analysis and Applications

Abstract

In previous chapters, we considered hard clustering methods. In hard clustering approach, each data point either belongs completely to some cluster or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Gustafson–Kessel c-means algorithm and the corresponding Matlab-code are available in [7].

References

  1. R. Babuška, P.J. van der Veen, U. Kaymak, Improved covariance estimation for Gustafson-Kessel clustering, in IEEE International Conference on Fuzzy Systems, (2002), pp. 1081–1085

    Google Scholar 

  2. A.M. Bagirov, Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recogn. 41, 3192–3199 (2008)

    Article  MATH  Google Scholar 

  3. A.M. Bagirov, An incremental DC algorithm for the minimum sum-of-squares clustering. Iran. J. Oper. Res. 5, 1–14 (2014)

    MathSciNet  Google Scholar 

  4. A.M. Bagirov, N. Karmitsa, S. Taheri, Partitional Clustering via Nonsmooth Optimization. Clustering via Optimization (Springer, Berlin, 2020)

    Google Scholar 

  5. A.M. Bagirov, J. Ugon, An algorithm for minimizing clustering functions. Optimization 54, 351–368 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. A.M. Bagirov, J. Ugon, D. Webb, An efficient algorithm for the incremental construction of a piecewise linear classifier. Inf. Syst. 36, 782–790 (2011)

    Article  Google Scholar 

  7. A.M. Bagirov, J. Ugon, D. Webb, Fast modified global k-means algorithm for incremental cluster construction. Pattern Recogn. 44, 866–876 (2011)

    Article  MATH  Google Scholar 

  8. A.M. Bagirov, J. Yearwood, A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. Eur. J. Oper. Res. 170, 578–596 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. J.C. Bezdek, R. Ehrlich, W. Full, FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10, 191–203 (1984)

    Article  Google Scholar 

  10. J.C. Bezdek, J. Keller, R. Krisnapuram, N. R. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing (Springer, Berlin, 2005)

    MATH  Google Scholar 

  11. K. Chan, C. Kwong, B. Hu, Market segmentation and ideal point identification for new product design using fuzzy data compression and fuzzy clustering methods. Appl. Soft Comput. 12, 1371–1378 (2012)

    Article  Google Scholar 

  12. C.-H. Chou, M.-C. Su, E. Lai, A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7, 205–220 (2004)

    Article  MathSciNet  Google Scholar 

  13. M. Collan, M. Fedrizzi, P. Luukka, A multi-expert system for ranking patents: an approach based on fuzzy pay-off distributions and a TOPSIS-AHP framework. Expert Syst. Appl. 40, 4749–4759 (2013)

    Article  Google Scholar 

  14. D.E. Finkel, DIRECT Optimization Algorithm User Guide (Center for Research in Scientific Computation. North Carolina State University, 2003). http://www4.ncsu.edu/definkel/research/index.html

    Google Scholar 

  15. H. Frigui, Unsupervised learning of arbitrarily shaped clusters using ensembles of Gaussian models. Pattern Anal. Appl. 8, 32–49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Frigui, C. Hwang, F.C.-H. Rhee, Clustering and aggregation of relational data with applications to image database categorization. Pattern Recogn. 40, 3053–3068 (2007)

    Article  MATH  Google Scholar 

  17. H. Frigui, R. Krishnapuram, Clustering by competitive agglomeration. Pattern Recogn. 30, 1109–1119 (1997)

    Article  Google Scholar 

  18. R. Grbić, E.K. Nyarko, R. Scitovski, A modification of the DIRECT method for Lipschitz global optimization for a symmetric function. J. Global Optim. 57, 1193–1212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Gurwitz, Weighted median algorithms for l 1 approximation. BIT 30, 301–310 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. D.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in Proceedings of the IEEE Conference on Decision Control (San Diego, 1979), pp. 761–766

    Google Scholar 

  21. P. Hanafizadeh, M. Mirzazadeh, Visualizing market segmentation using self-organizing maps and Fuzzy Delphi method ADSL market of a telecommunication company. Expert Syst. Appl. 38, 198–205 (2011)

    Article  Google Scholar 

  22. A.E. Hassanien, E. Emary, M.Z. Hossam, Retinal blood vessel localization approach based on bee colony swarm optimization fuzzy c-means and pattern search. J. Visual Commun. Image Represent. 31, 186–196 (2015)

    Article  Google Scholar 

  23. F. Höppner, F. Klawonn, A contribution to convergence theory of fuzzy c-means and derivatives. IEEE Trans. Fuzzy Syst. 11, 682–694 (2003)

    Article  Google Scholar 

  24. D. Horta, R.J. Campello, Automatic aspect discrimination in data clustering. Pattern Recogn. 45, 4370–4388 (2012)

    Article  MATH  Google Scholar 

  25. D. Horta, R.J.G.B. Campello, Comparing hard and overlapping clusterings. J. Mach. Learn. Res. 16, 2949–2997 (2015)

    MathSciNet  MATH  Google Scholar 

  26. E. Hüllermeier, M. Rifqi, S. Henzgen, R. Senge, Comparing fuzzy partitions: a generalization of the Rand index and related measures. IEEE Trans. Fuzzy Syst. 20, 546–556 (2012)

    Article  Google Scholar 

  27. D.R. Jones, C.D. Perttunen, B.E. Stuckman, Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. U. Kaymak, M. Setnes, Fuzzy clustering with volume prototype and adaptive cluster merging. IEEE Trans. Fuzzy Syst. 10, 705–712 (2002)

    Article  Google Scholar 

  29. A. Laha, Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring. Adv. Eng. Inf. 21, 281–291 (2007)

    Article  Google Scholar 

  30. F. Leisch, A toolbox for k-centroids cluster analysis. Comput. Stat. Data Anal. 51, 526–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. H.-C. Liu, B.-C. Jeng, J.-M. Yih, Y.-K. Yu, Fuzzy c-means algorithm based on standard Mahalanobis distances, in International Symposium on Information Processing (ISIP’09) (2009), pp. 422–427

    Google Scholar 

  32. A. Morales-Esteban, F. Martínez-Álvarez, S. Scitovski, R. Scitovski, A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Comput. Geosci. 73, 132–141 (2014)

    Article  Google Scholar 

  33. J.D. Pintér, Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Nonconvex Optimization and Its Applications, vol. 6 (Kluwer Academic Publishers, Dordrecht, 1996)

    Google Scholar 

  34. K. Sabo, R. Scitovski, The best least absolute deviations line—properties and two efficient methods. ANZIAM J. 50, 185–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Sabo, R. Scitovski, An approach to cluster separability in a partition. Inf. Sci. 305, 208–218 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Sabo, R. Scitovski, I. Vazler, One-dimensional center-based l 1-clustering method. Optim. Lett. 7, 5–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. V. Schwämmle, O.N. Jensen, A simple and fast method to determine the parameters for fuzzy c-means cluster analysis. Bioinformatics 26, 2841–2848 (2010)

    Article  Google Scholar 

  38. R. Scitovski, A new global optimization method for a symmetric Lipschitz continuous function and application to searching for a globally optimal partition of a one-dimensional set. J. Global Optim. 68, 713–727 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Scitovski, S. Scitovski, A fast partitioning algorithm and its application to earthquake investigation. Comput. Geosci. 59, 124–131 (2013)

    Article  Google Scholar 

  40. R. Scitovski, I. Vidović, D. Bajer, A new fast fuzzy partitioning algorithm. Expert Syst. Appl. 51, 143–150 (2016)

    Article  Google Scholar 

  41. L. Serir, E. Ramasso, N. Zerhouni, Evidential evolving Gustafson-Kessel algorithm for online data streams partitioning using belief function theory. Int. J. Approx. Reason. 53, 747–768 (2012)

    Article  MathSciNet  Google Scholar 

  42. H. Späth, Cluster-Formation und Analyse (R. Oldenburg Verlag, München, 1983)

    MATH  Google Scholar 

  43. A. Stetco, X.-J. Zeng, J. Keane, Fuzzy c-means+ +: Fuzzy c-means with effective seeding initialization. Expert Syst. Appl. 42, 7541–7548 (2015)

    Article  Google Scholar 

  44. J. Tang, G. Zhang, Y. Wang, H. Wang, F. Liu, A hybrid approach to integrate fuzzy c-means based imputation method with genetic algorithm for missing traffic volume data estimation. Transp. Res. C 51, 29–40 (2014)

    Article  Google Scholar 

  45. S. Theodoridis, K. Koutroumbas, Pattern Recognition, 4th edn. (Academic Press, Burlington, 2009)

    MATH  Google Scholar 

  46. I. Vazler, K. Sabo, R. Scitovski, Weighted median of the data in solving least absolute deviations problems. Commun. Stat. Theory Methods 41(8), 1455–1465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. L. Vendramin, R.J.G.B. Campello, E.R. Hruschka, On the comparison of relative clustering validity criteria, in Proceedings of the SIAM International Conference on Data Mining, SDM 2009, April 30–May 2, 2009, Sparks, Nevada, USA (SIAM, 2009), pp. 733–744

    Google Scholar 

  48. K.-L. Wu, A derivative parameter selections for fuzzy c-means. Pattern Recogn. 45, 407–415 (2012)

    Article  MATH  Google Scholar 

  49. K.-L. Wu, M.-S. Yang, A cluster validity index for fuzzy clustering. Pattern Recogn. Lett. 26, 1275–1291 (2005)

    Article  Google Scholar 

  50. Y. Zeng, Z. Xu, Y. He, Y. Rao, Fuzzy entropy clustering by searching local border points for the analysis of gene expression data. Knowl. Based Syst. 129, 105309 (2019)

    Google Scholar 

  51. C. Zhang, Y. Zhou, T. Martin, A validity index for fuzzy and possibilistic c-means algorithm, in Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, ed. by L. Magdalena, M. Ojeda-Aciegoand, J. L. Verdegay (2008), pp. 877–882

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scitovski, R., Sabo, K., Martínez-Álvarez, F., Ungar, Š. (2021). Fuzzy Clustering Problem. In: Cluster Analysis and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-74552-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74552-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74551-6

  • Online ISBN: 978-3-030-74552-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics