Skip to main content

Lignin and Lignocellulosic Materials: A Glance on the Current Opportunities for Energy and Sustainability

  • Chapter
  • First Online:
Advances in Sustainable Energy

Abstract

Fossil fuels are running out fast. The energy demand is one of the largest challenges humankind has ever faced. Applications targeting renewable resources that are nonpetroleum based are booming. The scientific community is now ever more dedicated to the production of sustainable, green, and bio-based materials. Biomasses have started to realize their potential as a renewable energy source! This sentence is becoming a truth, especially if we know that out of the 2TW energy coming from renewable energy sources and which represent only 21% of the actual current needs, biomasses contribute to more than 70% compared to around 30% from hydropower. Yet, most of the biomass is in the form of fuelwood as well as agricultural and animal wastes. Approximately 70 x 106 tons of lignin are produced in the pulping procedure and only ~2% of this enormous amount is reused! The fate of the rest is either a low-grade fuel or thrust aside as waste. With a high content of functional groups (especially hydroxyl moieties either aliphatic or aromatic) and an elevated carbon content, lignin retains the “considered necessary” properties for energy storage and energy reservation applications. These properties include, for example, liability for chemical modification and thermal stability. Moreover, lignin is of low cost, widely available from different plant sources, promising renewability, biodegradable, and biocompatible with relevant antioxidant and antimicrobial properties. A combination of these properties in one source has opened realms of applications in the fields of material sciences as well as in the associated fields, for example, biology and medicine as readers will see throughout the chapter. To that point, the authors are focusing on lignin in the production of biofuels, polymer-based materials, lignin as a carbon precursor for environmental and catalytic applications, and micro- and nanoscale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agirrezabal-Telleria I, Hemmann F, Jaeger C, Arias PL, Kemnitz E (2013) Functionalized partially hydroxylated MgF2 as catalysts for the dehydration of d-xylose to furfural. J Catal 305:81–91. https://doi.org/10.1016/j.jcat.2013.05.005

    Article  Google Scholar 

  2. Al-Saad K, El-Azazy M, Issa AA, Al-Yafie A, El-Shafie AS, Al-Sulaiti M, Shomar B (2019) Recycling of date pits into a green adsorbent for removal of heavy metals: a fractional factorial design-based approach. Front Chem 7(552):1–16. https://doi.org/10.3389/fchem.2019.00552

    Article  Google Scholar 

  3. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford [England]; New York

    Google Scholar 

  4. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523. https://doi.org/10.1016/j.rser.2012.12.022

    Article  Google Scholar 

  5. Bai X, Kim KH (2016) Biofuels and chemicals from lignin based on pyrolysis. In: Fang Z, Smith JRL (eds) Production of biofuels and chemicals from lignin. Springer, Singapore, pp 263–287. https://doi.org/10.1007/978-981-10-1965-4_9

    Chapter  Google Scholar 

  6. Barana D, Ali SD, Salanti A, Orlandi M, Castellani L, Hanel T, Zoia L (2016) Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds. ACS Sustain Chem Eng 4(10):5258–5267. https://doi.org/10.1021/acssuschemeng.6b00774

    Article  Google Scholar 

  7. Baumberger S, Lapierre C, Monties B, Lourdin D, Colonna P (1997) Preparation and properties of thermally molded and cast lignosulfonates-starch blends. Ind Crop Prod 6(3):253–258. https://doi.org/10.1016/S0926-6690(97)00015-0

    Article  Google Scholar 

  8. Baumberger S, Lapierre C, Monties B, Della Valle G (1998) Use of Kraft lignin as filler for starch films. Polym Degrad Stab 59(1–3):273–277

    Article  Google Scholar 

  9. Beisl S, Friedl A, Miltner A (2017) Lignin from micro- to Nanosize: applications. Int J Mol Sci 18:2367. https://doi.org/10.3390/ijms18112367

    Article  Google Scholar 

  10. Blinc R, Zidansek A, Šlaus I (2007) Sustainable development and global security. Energy 32(6):883–890. https://doi.org/10.1016/j.energy.2006.09.017

    Article  Google Scholar 

  11. Brebu M, Spiridon I (2012) Co-pyrolysis of LignoBoost Ò lignin with synthetic polymers. Polym Degrad Stab 97:2104–2109. https://doi.org/10.1016/j.polymdegradstab.2012.08.024

    Article  Google Scholar 

  12. Brundtland G (1987) Report of the world commission on environment and development: our common future. United Nations General Assembly document A/42/427

    Google Scholar 

  13. Budnyak TM, Aminzadeh S, Pylypchuk IV, Riazanova AV, Tertykh VA, Lindström ME, Sevastyanova O (2018) Peculiarities of synthesis and properties of lignin–silica nanocomposites prepared by Sol-Gel method. Nano 8(11):950

    Google Scholar 

  14. Bula K, Klapiszewski Ł, Jesionowski T (2019) Effect of processing conditions and functional silica/lignin content on the properties of bio-based composite thin sheet films. Polym Test 77:105911. https://doi.org/10.1016/j.polymertesting.2019.105911

    Article  Google Scholar 

  15. Buono P, Duval A, Verge P, Averous L, Habibi Y (2016) New insights on the chemical modification of lignin: acetylation versus Silylation. ACS Sustain Chem Eng 4(10):5212–5222. https://doi.org/10.1021/acssuschemeng.6b00903

    Article  Google Scholar 

  16. Cazacu G, Pascu M, Profire L, Kowarski AI, Mihaes M, Vasile C (2004) Lignin role in a complex polyolefin blend. Ind Crop Prod 20:261–273. https://doi.org/10.1016/j.indcrop.2004.04.030

    Article  Google Scholar 

  17. Cerrutti BM, de Souza CS, Castellan A, Ruggiero R, Frollini E (2012) Carboxymethyl lignin as a stabilizing agent in aqueous ceramic suspensions. Ind Crop Prod 36(1):108–115. https://doi.org/10.1016/j.indcrop.2011.08.015

    Article  Google Scholar 

  18. Chandna S, Thakur NS, Reddy YN, Kaur R, Bhaumik J (2019) Engineering lignin stabilized bimetallic nanocomplexes: structure, mechanistic elucidation, antioxidant, and antimicrobial potential. ACS Biomater Sci Eng 5(7):3212–3227

    Article  Google Scholar 

  19. Chi Z, Hao L, Dong H, Yu H, Liu H, Wang Z, Yu H (2020) The innovative application of organosolv lignin for nanomaterial modification to boost its heavy metal detoxification performance in the aquatic environment. Chem Eng J 382:122789. https://doi.org/10.1016/j.cej.2019.122789

    Article  Google Scholar 

  20. Chowdhury MA (2014) The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. Int J Biol Macromol 65:136–147. https://doi.org/10.1016/j.ijbiomac.2014.01.012

    Article  Google Scholar 

  21. Chung Y-L, Olsson JV, Li RJ, Frank CW, Waymouth RM, Billington SL, Sattely ES (2013) A renewable lignin–Lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1(10):1231–1238. https://doi.org/10.1021/sc4000835

    Article  Google Scholar 

  22. Collins MN, Nechifor M, Tanasă F, Zănoagă M, McLoughlin A, Stróżyk MA, Culebras M, Teacă C-A (2019) Valorization of lignin in polymer and composite systems for advanced engineering applications – a review. Int J Biol Macromol 131:828–849. https://doi.org/10.1016/j.ijbiomac.2019.03.069

    Article  Google Scholar 

  23. Constant S, Wienk HLJ, Frissen AE, Pd P, Boelens R, van Es DS, Grisel RJH, Weckhuysen BM, Huijgen WJJ, Gosselink RJA, Bruijnincx PCA (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem 18(9):2651–2665. https://doi.org/10.1039/C5GC03043A

    Article  Google Scholar 

  24. Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2001) Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. J Agric Food Chem 49(5):2459–2464. https://doi.org/10.1021/jf001237h

    Article  Google Scholar 

  25. de Souza dos Santos GE, Ide AH, Duarte JLS, McKay G, Silva AOS, Meili L (2020) Adsorption of anti-inflammatory drug diclofenac by MgAl/layered double hydroxide supported on Syagrus coronata biochar. Powder Technol 364:229–240. https://doi.org/10.1016/j.powtec.2020.01.083

    Article  Google Scholar 

  26. Deudney D, Flavin C (1983) Renewable energy. The Power to Choose. ERIC

    Google Scholar 

  27. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276. https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  Google Scholar 

  28. El-Azazy M, Kalla RN, Issa AA, Al-Sulaiti M, El-Shafie AS, Shomar B, Al-Saad K (2019) Pomegranate peels as versatile adsorbents for water purification: application of box–Behnken design as a methodological optimization approach. Environ Prog Sustain Energy 38(6):13223. https://doi.org/10.1002/ep.13223

    Article  Google Scholar 

  29. El-Azazy M, Dimassi S, El-Shafie A, Issa A (2019a) Bio-waste Aloe vera leaves as an efficient adsorbent for titan yellow from wastewater: structuring of a novel adsorbent using Plackett-Burman factorial design. Appl Sci 9(22):4856. https://doi.org/10.3390/app9224856

    Article  Google Scholar 

  30. El-Azazy M, El-Shafie AS, Ashraf A, Issa AA (2019b) Eco-structured Biosorptive removal of basic Fuchsin using pistachio nutshells: a definitive screening design-based approach. Appl Sci 9(22):4855. https://doi.org/10.3390/app9224855

    Article  Google Scholar 

  31. El-Azazy M, El-Shafie AS, Issa AA, Al-Sulaiti M, Al-Yafie J, Shomar B, Al-Saad K (2019c) Potato peels as an adsorbent for heavy metals from aqueous solutions: eco-structuring of a green adsorbent operating Plackett–Burman design. J Chem 2019(4926240):1–14. https://doi.org/10.1155/2019/4926240

    Article  Google Scholar 

  32. Feldman D (2002) Lignin and its Polyblends — a review. In: Hu TQ (ed) Chemical modification, properties, and usage of lignin. Springer, Boston, pp 81–99. https://doi.org/10.1007/978-1-4615-0643-0_5

    Chapter  Google Scholar 

  33. Feldman D, Khoury M (1988) Epoxy-lignin polyblends. Part II Adhesive behavior and weathering. J Adhesion Sci Technol 2(1):107–116. https://doi.org/10.1163/156856188X00110

    Article  Google Scholar 

  34. Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269. https://doi.org/10.1016/j.pmatsci.2017.12.001

    Article  Google Scholar 

  35. French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91(1):25–32. https://doi.org/10.1016/j.fuproc.2009.08.011

    Article  Google Scholar 

  36. Gratzl JS, Chen C-L (1999) Chemistry of pulping: lignin reactions. In: lignin: historical, biological, and materials perspectives, vol 742. ACS symposium series. Am Chem Soc 742:392–421. https://doi.org/10.1021/bk-2000-0742.ch020

    Article  Google Scholar 

  37. Graupner N (2008) Application of lignin as natural adhesion promoter in cotton Fiber-reinforced poly(lactic acid) (PLA) composites. J Mater Sci 43:5222–5229. https://doi.org/10.1007/s10853-008-2762-3

    Article  Google Scholar 

  38. Guo Y-G, Hu J-S, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices (Advanced materials (2008) 20 (2878-2887)). Adv Mater 20:2878–2887. https://doi.org/10.1002/adma.200800627

    Article  Google Scholar 

  39. Han Y, Ye L, Gu X, Zhu P, Lu X (2019) Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using γ-valerolactone as a solvent. Ind Crop Prod 127:88–93. https://doi.org/10.1016/j.indcrop.2018.10.058

    Article  Google Scholar 

  40. Hashemi Sangtarashani SM, Rahmaninia M, Behrooz R, Khosravani A (2020) Lignocellulosic hydrogel from recycled old corrugated container resources using ionic liquid as a green solvent. J Environ Manag 270:110853. https://doi.org/10.1016/j.jenvman.2020.110853

    Article  Google Scholar 

  41. Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200. https://doi.org/10.1039/C5GC02616D

    Article  Google Scholar 

  42. Kaushik N (2014) ‘Derivatives & Applications of lignin-an Insight’ Akriti Agrawal, Nirmala Kaushik & Soumitra Biswas. Scitech J 1(7):30–36

    Google Scholar 

  43. Khan N, Chowdhary P, Ahmad A, Shekher Giri B, Chaturvedi P (2020) Hydrothermal liquefaction of rice husk and cow dung in mixed-bed-rotating Pyrolyzer and application of biochar for dye removal. Bioresour Technol 309:123294. https://doi.org/10.1016/j.biortech.2020.123294

    Article  Google Scholar 

  44. Kim YS, Kadla JF (2010) Preparation of a Thermoresponsive lignin-based biomaterial through atom transfer radical polymerization. Biomacromolecules 11(4):981–988. https://doi.org/10.1021/bm901455p

    Article  Google Scholar 

  45. Kristufek SL, Wacker KT, Tsao Y-YT SLS, Wooley KL (2017) Monomer design strategies to create natural product-based polymer materials. Nat Prod Rep 34(4):433–459

    Article  Google Scholar 

  46. Kunanopparat T, Menut P, Morel M-H, Guilbert S (2009) Modification of the wheat gluten network by Kraft lignin addition. J Agric Food Chem 57(18):8526–8533. https://doi.org/10.1021/jf901183z

    Article  Google Scholar 

  47. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39(7):1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  Google Scholar 

  48. Lee S, Kim H, Cho E, Song Y, Bae H-J (2014) Isolation and characterization of lignin from the oak wood bioethanol production residue for adhesives. Int J Biol Macromol 72C:1056–1062. https://doi.org/10.1016/j.ijbiomac.2014.10.020

    Article  Google Scholar 

  49. Lemaire X (2010) Glossary of terms in sustainable energy regulation. renewable energy and energy efficiency partnership / Sustainable Energy Regulation Network, August 2004

    Google Scholar 

  50. Li Y, Sarkanen S (1999) Thermoplastics with very high lignin contents. In: lignin: historical, biological, and materials perspectives, vol 742. ACS symposium series. Am Chem Soc 742:351–366. https://doi.org/10.1021/bk-2000-0742.ch018

    Article  Google Scholar 

  51. Linthorst JA (2010) An overview: origins and development of green chemistry. Found Chem 12(1):55–68. https://doi.org/10.1007/s10698-009-9079-4

    Article  Google Scholar 

  52. Liu F, Xu K, Chen M, Cao D (2012) The rheological and mechanical properties of PVC-lignin blends. Int Polym Process 27:121–127. https://doi.org/10.3139/217.2487

    Article  Google Scholar 

  53. Liu L, Qian M, Pa S, Huang G, Yu Y, Fu S (2016) Fabrication of green lignin-based flame retardants for enhancing the thermal and fire Retardancy properties of polypropylene/wood composites. ACS Sustain Chem Eng 4(4):2422–2431. https://doi.org/10.1021/acssuschemeng.6b00112

    Article  Google Scholar 

  54. López Serna D, Elizondo Martínez P, Reyes González MÁ, Zaldívar Cadena AA, Zaragoza Contreras EA, Sánchez Anguiano MG (2019) Synthesis and characterization of a lignin-styrene-butyl acrylate based composite. Polymers (Basel) 11(6):1080. https://doi.org/10.3390/polym11061080

    Article  Google Scholar 

  55. Luo M, Lin H, Li B, Dong Y, He Y, Wang L (2018) A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour Technol 259:312–318. https://doi.org/10.1016/j.biortech.2018.03.075

    Article  Google Scholar 

  56. Mandlekar N, Cayla A, Rault F, Giraud S, Salaün F, Malucelli G, Guan J (2017) Thermal stability and fire retardant properties of polyamide 11 microcomposites containing different Lignins. Ind Eng Chem Res 56(46):13704–13714. https://doi.org/10.1021/acs.iecr.7b03085

    Article  Google Scholar 

  57. Mark HF, Kroschwitz JI (1985) Encyclopedia of polymer science and engineering

    Google Scholar 

  58. Markovska N, Duić N, Mathiesen BV, Guzović Z, Schlör H, Bjelić IB, Lund H (2018) Shedding light on energy transition: special issue dedicated to 2016 conferences on sustainable development of energy, water, and environment systems. Energy 144:322–325

    Article  Google Scholar 

  59. Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45(10):4015–4039. https://doi.org/10.1021/ma3001719

    Article  Google Scholar 

  60. Megiatto J, Silva C, Rosa D, Frollini E (2008) Sisal chemically modified with lignins: correlation between fibers and phenolic composites properties. Polym Degrad Stab 93:1109–1121. https://doi.org/10.1016/j.polymdegradstab.2008.03.011

    Article  Google Scholar 

  61. Minet J, Cayla A, Campagne C (2019) Lignin as sustainable antimicrobial fillers to develop PET multifilaments by melting process. In: Organic Polymers. IntechOpen,

    Google Scholar 

  62. Morandim A, Lanças B, Magnabosco R, Casarin S, Bettini S (2012) Lignin as an additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr Polym 87:2563–2568. https://doi.org/10.1016/j.carbpol.2011.11.041

    Article  Google Scholar 

  63. Mousavioun P, Doherty WOS, George G (2010) Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crop Prod 32(3):656–661. https://doi.org/10.1016/j.indcrop.2010.08.001

    Article  Google Scholar 

  64. Myllytie P, Misra M, Mohanty AK (2016) Carbonized lignin as sustainable filler in biobased poly(trimethylene terephthalate) polymer for injection molding applications. ACS Sustain Chem Eng 4(1):102–110. https://doi.org/10.1021/acssuschemeng.5b00796

    Article  Google Scholar 

  65. Nägele H, Pfitzer J, Nägele E, Inone ER, Eisenreich N, Eckl W, Eyerer P (2002) Arboform® - a thermoplastic, Processable material from lignin and natural fibers. In: Hu TQ (ed) Chemical modification, properties, and usage of lignin. Springer, Boston, pp 101–119. https://doi.org/10.1007/978-1-4615-0643-0_6

    Chapter  Google Scholar 

  66. Nagele H, Pfitzer J, Ziegler L, Inone-Kauffmann E, Eckl W, Eisenreich N (2014) Lignin matrix composites from natural resources-arboform®. Bio-based plastics: materials and applications; Kabasci, S, Ed:89-115

    Google Scholar 

  67. Norgren M, Edlund H (2014) Lignin: recent advances and emerging applications. Curr Opin Colloid Interface Sci 19(5):409–416. https://doi.org/10.1016/j.cocis.2014.08.004

    Article  Google Scholar 

  68. Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2013) Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocoll 30(1):163–172. https://doi.org/10.1016/j.foodhyd.2012.05.017

    Article  Google Scholar 

  69. Ojijo V, Sinha Ray S (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38(10):1543–1589. https://doi.org/10.1016/j.progpolymsci.2013.05.011

    Article  Google Scholar 

  70. Okuda N, Sato M (2004) Manufacture and mechanical properties of binderless boards from kenaf core. J Wood Sci 50(1):53–61. https://doi.org/10.1007/s10086-003-0528-8

    Article  Google Scholar 

  71. Ortiz-Serna P, Carsí M, Culebras M, Collins MN, Sanchis MJ (2020) Exploring the role of lignin structure in molecular dynamics of lignin/bio-derived thermoplastic elastomer polyurethane blends. Int J Biol Macromol 158:1369–1379. https://doi.org/10.1016/j.ijbiomac.2020.04.261

    Article  Google Scholar 

  72. Park CM, Jonghun H, Chu K, Al-Hamadani Y, Her N-G, Heo J, Yoon Y (2017) Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: experiment and modeling. J Ind Eng Chem 48:186–193. https://doi.org/10.1016/j.jiec.2016.12.038

    Article  Google Scholar 

  73. Veiga PAdS, Schultz J, Matos TTdS, Fornari MR, Costa TG, Meurer L, Mangrich AS (2020) Production of high-performance biochar using a simple and low-cost method: optimization of pyrolysis parameters and evaluation for water treatment. J Anal Appl 148:104823. https://doi.org/10.1016/j.jaap.2020.104823

  74. Popa VI, Capraru A-M, Grama S, Malutan T (2011) Nanoparticles based on modified lignins with biocide properties. Cellul Chem Technol 45(3):221

    Google Scholar 

  75. Pradyawong S, Qi G, Li N, Sun XS, Wang D (2017) Adhesion properties of soy protein adhesives enhanced by biomass lignin. Int J Adhes 75:66–73. https://doi.org/10.1016/j.ijadhadh.2017.02.017

    Article  Google Scholar 

  76. Pukšec T, Leahy P, Foley A, Markovska N, Duić N (2018) Sustainable development of energy, water, and environment systems 2016. Renew Sust Energ Rev 82:1685–1690. https://doi.org/10.1016/j.rser.2017.10.057

    Article  Google Scholar 

  77. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843. https://doi.org/10.1126/science.1246843

    Article  Google Scholar 

  78. Rai S, Singh BK, Bhartiya P, Singh A, Kumar H, Dutta P, Mehrotra G (2017) Lignin derived reduced fluorescence carbon dots with theranostic approaches: nano-drug-carrier and bioimaging. J Lumin 190:492–503

    Article  Google Scholar 

  79. Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56:240–249. https://doi.org/10.1016/j.copbio.2019.02.019

    Article  Google Scholar 

  80. Rangabhashiyam S, Balasubramanian P (2019) The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism, and wastewater application—a review. Ind Crop Prod 128:405–423. https://doi.org/10.1016/j.indcrop.2018.11.041

    Article  Google Scholar 

  81. Rangan A, Manjula MV, Satyanarayana KG, Menon R (n.d.) Lignin/Nanolignin, and their biodegradable composites. https://doi.org/10.1002/9781118911068.ch7

  82. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining, and catalysis. Angew Chem Int Ed 55(29):8164–8215. https://doi.org/10.1002/anie.201510351

    Article  Google Scholar 

  83. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (technical report). Pure Appl Chem 66(8):1739–1758. https://doi.org/10.1351/pac199466081739

    Article  Google Scholar 

  84. Sandouqa A, Al-Hamamre Z, Asfar J (2019) Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production. Renew Energy 132:667–682. https://doi.org/10.1016/j.renene.2018.08.029

    Article  Google Scholar 

  85. Serra-Parareda F, Tarrés Q, Espinach FX, Vilaseca F, Mutjé P, Delgado-Aguilar M (2020) Influence of lignin content on the intrinsic modulus of natural fibers and the stiffness of composite materials. Int J Biol Macromol 155:81–90. https://doi.org/10.1016/j.ijbiomac.2020.03.160

    Article  Google Scholar 

  86. Shen J, Wyman C (2012) Hydrochloric acid-catalyzed Levulinic acid formation from cellulose: data and kinetic model to maximize yields. AICHE J 58:236–246. https://doi.org/10.1002/aic.12556

    Article  Google Scholar 

  87. Sirviö JA, Ismail MY, Zhang K, Tejesvi MV, Ämmälä A (2020) Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties. J Mater Chem A 8(16):7935–7946. https://doi.org/10.1039/C9TA13182E

    Article  Google Scholar 

  88. SjÖStrÖM E (1993) Chapter 4 - LIGNIN. In: SjÖStrÖM E (ed) Wood chemistry, 2nd edn. Academic Press, San Diego, pp 71–89. https://doi.org/10.1016/B978-0-08-092589-9.50008-5

    Chapter  Google Scholar 

  89. Spiridon I, Teaca C-A, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46:3241–3251. https://doi.org/10.1007/s10853-010-5210-0

    Article  Google Scholar 

  90. Stewart D (2008) Lignin as a base material for materials applications: chemistry, application, and economics. Ind Crop Prod 27:202–207. https://doi.org/10.1016/j.indcrop.2007.07.008

    Article  Google Scholar 

  91. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847. https://doi.org/10.1016/j.ijbiomac.2014.09.044

    Article  Google Scholar 

  92. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092. https://doi.org/10.1021/sc500087z

    Article  Google Scholar 

  93. Thines KR, Abdullah EC, Mubarak NM (2017) Effect of process parameters for production of microporous magnetic biochar derived from agriculture waste biomass. Microporous Mesoporous Mater 253:29–39. https://doi.org/10.1016/j.micromeso.2017.06.031

    Article  Google Scholar 

  94. Tong X, Jiang L, Li Y, Chen X, Zhao Y, Hu B, Zhang F (2020) Function of agricultural waste montmorillonite-biochars for sorptive removal of 17β-estradiol. Bioresour Technol 296:122368. https://doi.org/10.1016/j.biortech.2019.122368

    Article  Google Scholar 

  95. Trevisan H, Rezende CA (2020) Pure, stable, and highly antioxidant lignin nanoparticles from elephant grass. Ind Crop Prod 145:112105. https://doi.org/10.1016/j.indcrop.2020.112105

    Article  Google Scholar 

  96. Tupciauskas R, Gravitis J, Abolins J, Vēveris A, Andzs M, Liitiä T, Tamminen T (2017) Utilization of lignin powder for manufacturing self-binding HDF. Holzforschung 71:555–561. https://doi.org/10.1515/hf-2016-0180

    Article  Google Scholar 

  97. Turunen M, Alvila L, Pakkanen TT, Rainio J (2003) Modification of phenol-formaldehyde resol resins by lignin, starch, and urea. J Appl Polym Sci 88(2):582–588. https://doi.org/10.1002/app.11776

    Article  Google Scholar 

  98. Ullah K, Kumar Sharma V, Dhingra S, Braccio G, Ahmad M, Sofia S (2015) Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew Sust Energ Rev 51:682–698. https://doi.org/10.1016/j.rser.2015.06.044

    Article  Google Scholar 

  99. UN (1987) Our Common Future, Chapter 7: Energy: Choices for Environment and Development. Available from: http://www.un-documents.net/ocf-07.htm#V

  100. Urbaniec K, Mikulčić H, Rosen MA, Duić N (2017) A holistic approach to the sustainable development of energy, water, and environment systems. J Clean Prod 155:1–11. https://doi.org/10.1016/j.jclepro.2017.01.119

    Article  Google Scholar 

  101. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285. https://doi.org/10.1016/j.pbi.2008.03.005

    Article  Google Scholar 

  102. Vengal J, Srikumar M (2005) Processing and study of novel lignin-starch and lignin-gelatin biodegradable polymeric films. Artif Organs 18(2):237–241

    Google Scholar 

  103. Wang X, Zhao J (2013) Encapsulation of the herbicide Picloram by using polyelectrolyte biopolymers as layer-by-layer materials. J Agric Food Chem 61(16):3789–3796. https://doi.org/10.1021/jf4004658

    Article  Google Scholar 

  104. Wang M, Leitch M, Xu C (2009) Synthesis of phenol-formaldehyde resol resins using organosolv pine lignins. Eur Polym J 45:3380–3388. https://doi.org/10.1016/j.eurpolymj.2009.10.003

    Article  Google Scholar 

  105. Wang J, Yao K, Korich AL, Li S, Ma S, Ploehn HJ, Iovine PM, Wang C, Chu F, Tang C (2011) Combining renewable gum rosin and lignin: towards hydrophobic polymer composites by controlled polymerization. J Polym Sci A Polym Chem 49(17):3728–3738. https://doi.org/10.1002/pola.24809

    Article  Google Scholar 

  106. Wang H, Zou J, Shen Y, Fei G, Mou J (2013) Preparation and colloidal properties of aqueous acetic acid lignin-containing polyurethane surfactant. J Appl Polym Sci 130(3):1855–1862. https://doi.org/10.1002/app.39300

    Article  Google Scholar 

  107. Wei Z, Yang Y, Yang R, Wang C (2012) Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization. Green Chem 14(11):3230–3236

    Article  Google Scholar 

  108. Windeisen E, Wegener G (2012) 10.15 - lignin as building unit for polymers. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 255–265. https://doi.org/10.1016/B978-0-444-53349-4.00263-6

    Chapter  Google Scholar 

  109. Woodhouse EJ, Breyman S (2005) Green chemistry as social movement? Sci Technol Hum Values 30(2):199–222. https://doi.org/10.1177/0162243904271726

    Article  Google Scholar 

  110. Worarutariyachai T, Chuangchote S (2020) Carbon fibers derived from pure alkali lignin fibers through electrospinning with carbonization. Bioresources 15(2):2412–2427

    Article  Google Scholar 

  111. Xu X, He Z, Lu S, Guo D, Yu J (2014) Enhanced thermal and mechanical properties of lignin/polypropylene wood-plastic composite by using flexible segment-containing reactive compatibilizer. Macromol Res 22(10):1084–1089. https://doi.org/10.1007/s13233-014-2161-3

    Article  Google Scholar 

  112. Xu C-a, Chen G, Tan Z, Hu Z, Qu Z, Zhang Q, Lu M, Wu K, Lu M, Liang L (2020) Evaluation of cytotoxicity in vitro and properties of polysiloxane-based polyurethane/lignin elastomers. React Funct Polym 149:104514. https://doi.org/10.1016/j.reactfunctpolym.2020.104514

    Article  Google Scholar 

  113. Yang D, Qiu X, Pang Y, Zhou M (2008) Physicochemical properties of calcium lignosulfonate with different molecular weights as dispersant in aqueous suspension. J Dispers Sci Technol 29(9):1296–1303. https://doi.org/10.1080/01932690701866534

    Article  Google Scholar 

  114. Zhu J, Yan C, Zhang X, Yang C, Jiang M, Zhang X (2020) A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. Prog Energy Combust Sci 76:100788. https://doi.org/10.1016/j.pecs.2019.100788

    Article  Google Scholar 

  115. Zikeli F, Vinciguerra V, Sennato S, Scarascia Mugnozza G, Romagnoli M (2020) Preparation of lignin nanoparticles with entrapped essential oil as a bio-based biocide delivery system. ACS Omega 5(1):358–368. https://doi.org/10.1021/acsomega.9b02793

    Article  Google Scholar 

Download references

Acknowledgments

M E-A and MFS would like to thank their university and associated funding agencies, both private and public. LL would like to thank the National Science Foundation (NSF-MRI, CBET 0821370), and alongside SB, the R. Welch Foundation (AC-0006) from the Texas A&M University-Kingsville, is also duly acknowledged.

Author Contribution

Marwa El-Azazy (M.E.): suggestion of chapter topic, collecting sources and references, writing the first draft, creation of figures and artwork, and final revision. Mohamed F. Shibl (M.F.S.): suggestion of chapter topic, revision of different drafts, and assembling chapter to the publisher’s format. Sajid Liu (S. L.): scientific discussion and suggestions, and revision of different drafts. Jingbo L. Liu (J. L. L.): scientific discussion and check of the tables.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marwa El-Azazy or Mohamed F. Shibl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Azazy, M., Bashir, S., Liu, J.L., Shibl, M.F. (2021). Lignin and Lignocellulosic Materials: A Glance on the Current Opportunities for Energy and Sustainability. In: Gao, Yj., Song, W., Liu, J.L., Bashir, S. (eds) Advances in Sustainable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-74406-9_22

Download citation

Publish with us

Policies and ethics