Skip to main content

Dynamic Testing and Continuous Dynamic Monitoring of Transportation, Stadia and Energy Infrastructures

  • Conference paper
  • First Online:
Civil Structural Health Monitoring (CSHM 2021)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 156))

Included in the following conference series:

  • 1244 Accesses

Abstract

The Laboratory of Vibrations and Structural Monitoring (ViBest, www.fe.up.pt/vibest) of CONSTRUCT/FEUP has been implementing, since 2007, a significant set of long-term dynamic monitoring systems in large Civil structures with different typologies (e.g. roadway, railway and pedestrian bridges, stadia suspension roofs, wind turbines, concrete dams or high voltage transmission lines). This paper briefly describes some of these applications, showing the interest and potential of the developed technology, as well as of the huge high quality database created, which can be used for joint collaborative research at European level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cantieni R, Deger Y, Pietrzko S (1994) Large structure investigation with dynamic methods: the bridge on the river Aare at Aarburg. In: Prestressed concrete in Switzerland, Report of the Swiss FIP Group to the 12th FIP congress, Washington D.C.

    Google Scholar 

  2. Pietrzko S, Cantieni R, Deger Y (1996) Modal testing of a steel/concrete composite bridge with a servo-hydraulic shaker. In: Proceedings of the 14th International Modal Analysis Conference (IMAC), Dearbon, Michigan, pp 91–98

    Google Scholar 

  3. Keightley W, Housner G, Hudson D (1961) Vibration tests of the Encino Dam intake tower. California Institute of Technology, Pasadena

    Google Scholar 

  4. Cantieni R (2001) Assessing a dam’s structural properties using forced vibration testing. In: Proceedings of the IABSE international conference on safety, risk and reliability—trends in engineering, Malta

    Google Scholar 

  5. Caetano E (1992) Identificação Experimental de Parâmetros Dinâmicos em Sistemas Estruturais, Tese de Mestrado, FEUP

    Google Scholar 

  6. Maia N et al (1997) Theoretical and experimental modal analysis. Research Studies Press, UK

    Google Scholar 

  7. Cunha A, Caetano E, Magalhães F (2007) Output-only dynamic testing of bridges and special structures. Struct Concr J FIB 8(2):67–85

    Article  Google Scholar 

  8. Carder D (1936) Observed vibrations of buildings. Bull Seismol Soc Am 26(4):245–277

    Article  Google Scholar 

  9. Vincent G (1958) Golden gate bridge vibration study. ASCE J Struct Div 4:ST6

    Google Scholar 

  10. McLamore V, Hart G, Stubbs I (1971) Ambient vibration of two suspension bridges. ASCE J Struct Div 97(ST10):2567–2582

    Article  Google Scholar 

  11. Trifunac M (1972) Comparisons between ambient and forced vibration experiments. Earth Eng Struct Dyn 1:133–150

    Article  Google Scholar 

  12. Brownjohn JM, Dumanoglu AA, Severn RT, Blakeborough A (1989) Ambient vibration survey of the Bosporous suspension bridge. Earthq Eng Struct Dyn 18:263–283

    Article  Google Scholar 

  13. Brownjohn JMW, Dumanoglu AA, Severn RT (1992) Ambient vibration survey of the Fatih Sultan Mehmet (Second Bosporus) suspension bridge. Earthq Eng Struct Dyn 21:907–924

    Article  Google Scholar 

  14. James GH, Carne TG, Lauffer JP, Nord AR (1992) Modal testing using natural excitation. In: Proceedings of the 10 th international modal analysis conference, San Diego, California, USA, pp 1209–1216

    Google Scholar 

  15. Cunha A, Caetano E, Delgado R (2001) Dynamic tests on a large cable-stayed bridge. Efficient Approach J Bridge Eng ASCE 6(1):54–62

    Article  Google Scholar 

  16. Flamand O, Grillaud G (2006) Dynamic testing of the Millau Viaduct. In: Proceedings of the third international conference on bridge maintenance, safety and management, Porto, Portugal

    Google Scholar 

  17. Brownjohn JMW, Magalhães F, Caetano E, Cunha A (2010) Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Eng Struct 32(8):2003–2018

    Article  Google Scholar 

  18. Catbas FN, Grimmelsman KA, Aktan AE (2000) Structural identification of the Commodore Barry Bridge. In: Proceedings of the SPIE, 3995, pp 84–97

    Google Scholar 

  19. Brownjohn JMW, Moyo P, Omenzetter P, Lu Y (2003) Assessment of highway bridge upgrading by dynamic testing and finite element model updating. ASCE J Bridge Eng 8:162–172

    Article  Google Scholar 

  20. Alampalli S (1998) Influence of in-service environment on modal parameters. In: Proceedings of 16th international. modal analysis conference, Santa Barbara, USA

    Google Scholar 

  21. Kramer C, de Smet CAM, De Roeck G (1999) Z24 Bridge damage detection tests. In: Proceedings of IMAC XVII, Kissimmee, Florida, pp 1023–1029

    Google Scholar 

  22. Wong KY (2004) Instrumentation and health monitoring of cable-supported bridges. Struct Control Health Monit 11:91–124

    Article  Google Scholar 

  23. Ko JM, Ni YQ (2005) Technology developments in structural health monitoring of large-scale bridges. Eng Struct 27(12):1715–1725

    Article  Google Scholar 

  24. FIB, FIB Bulletin 22 (2003) Monitoring and safety evaluation of existing concrete structures

    Google Scholar 

  25. Cunha A, Caetano E, Magalhães F, Moutinho C (2013) Recent perspectives in dynamic testing and monitoring of bridges. J Struct Control Health Monit 20(6):853–877

    Article  Google Scholar 

  26. SÉTRA/AFGC, Footbridges (2006) Assessment of vibrational behaviour of footbridges under pedestrian loads

    Google Scholar 

  27. HIVOSS (2007) Human induced vibration of steel structures guidelines. RFCS European Project. 2007. See http://www.stb.rwth-aachen.de/projekte/2007/HIVOSS/download.php

  28. Caetano E, Cunha A, Moutinho C, Magalhães F (2010) Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 2: implementation of tuned mass dampers. Eng Struct 32:1082–1091

    Google Scholar 

  29. Hu W-H, Moutinho C, Caetano E, Magalhães F, Cunha A (2012) Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection. Mech Syst Signal Process 33:38–55

    Article  Google Scholar 

  30. Hu W-H, Caetano E, Cunha A (2013) Structural health monitoring of a stress-ribbon footbridge. Eng Struct 57:578–593

    Article  Google Scholar 

  31. Caetano E, Cunha A (2013) Implementation of a control system in a lively footbridge. IABSE conference, Rotterdam, Netherlands

    Google Scholar 

  32. Caetano E, Cunha A (2014) Vibration mitigation of footbridges: case studies. International conference FOOTBRIDGE 2014, London, UK

    Google Scholar 

  33. Caetano E, Cunha A (2012) Dynamic characterisation of the new footbridge over the rio Ave at Parque da Rabada after installation of TMDs, ViBest/FEUP Report (in Portuguese)

    Google Scholar 

  34. Moutinho C, Hu W-H, Caetano E, Cunha A (2013) Dynamic monitoring of the new footbridge over the rio Ave at Parque da Rabada: one year monitoring, ViBest/ FEUP Report (in Portuguese)

    Google Scholar 

  35. Caetano E, Cunha A (2004) Experimental and numerical assessment of the dynamic behaviour of a stress-ribbon footbridge. Struct Concr 5(1):29–38

    Article  Google Scholar 

  36. Caetano E, Cunha A (2005) Study of the potential of collapse of a footbridge under vandal loads. IABSE Symposium on structures and extreme events, Lisbon, Portugal

    Google Scholar 

  37. Hu W-H (2010) Operational modal analysis and continuous dynamic monitoring of footbridges. Ph. D. Thesis, Faculty of Engineering, University of Porto, Portugal

    Google Scholar 

  38. Hu W-H, Cunha A, Caetano E, Magalhães F, Moutinho C (2010) LabVIEW toolkits for output-only modal identification and long-term dynamic structural monitoring. Struct Infrastruct Eng 6(5):557–574

    Article  Google Scholar 

  39. Marques F, Hu W-H, Moutinho C, Magalhães F, Cunha A (2011) Evaluation of dynamic effects and fatigue assessment of a railway bridge supported by temporary monitoring. In: Proceedings of the EURODYN’2011, Leuven, Belgium

    Google Scholar 

  40. Marques F, Moutinho C, Hu W-H, Cunha A, Caetano E (2016) Weigh-in-motion implementation in an old metallic railway bridge. Eng Struct 123:15–29

    Article  Google Scholar 

  41. Marques F, Cunha A, Caetano E, Moutinho C, Magalhães F (2014) Analysis of dynamic and fatigue effects in a old metallic riveted bridge. J Constr Steel Res 99C:85–101

    Article  Google Scholar 

  42. Magalhães F (2010) Operational modal analysis for testing and monitoring of bridges and special structures. PhD Thesis, Faculty of Engineering of the University of Porto

    Google Scholar 

  43. Magalhães F, Cunha A, Caetano E (2012) Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mech Syst Sig Process 28:212–228

    Article  Google Scholar 

  44. Croiset JE, Ryckaert J, Spielmann A, Viel G (2005) Viaduc de la Grande Ravine, Travaux n°823, 01/10/05, pp 110–116

    Google Scholar 

  45. Bastos F (2015) Aerodynamic behaviour of long span structures. numerical analysis and experimental validation based on full-scale measurements, PhD Thesis (in English), FEUP

    Google Scholar 

  46. Amador S, Magalhães F, Cunha A, Caetano E, Martins N (2017) Automated modal tracking in a football stadium suspension roof for detection of structural changes. Struct Control Health Monit 24(11)

    Google Scholar 

  47. Martins N, Caetano E, Diord S, Magalhães F, Cunha A (2014) Dynamic monitoring of a stadium suspension roof: wind and temperature influence on modal parameters and structural response. Eng Struct 59C:80–94

    Article  Google Scholar 

  48. Blanco M (2009) The economics of wind energy. Renew Sustain Energy Rev 13(6–7):1372–82

    Article  Google Scholar 

  49. Oliveira G, Magalhães F, Cunha A, Caetano E (2018) Continuous dynamic monitoring of an onshore wind turbine. Eng Struct 164:22–39

    Article  Google Scholar 

  50. Hansen MH (2007) Aeroelastic instability problems for wind turbines. Wind Energy 2007(10):551–77

    Article  Google Scholar 

  51. EDP. Energias de Portugal. [cited 2018 06/04/2018]; Available from: http://www.a-nossa-energia.edp.pt/centros_produtores/

  52. Magalhães F, Cunha Á, Caetano E (2008) Dynamic monitoring of a long span arch bridge. Eng Struct 30(11):3034–3044

    Article  Google Scholar 

  53. Magalhães F, Amador S, Cunha Á, Caetano E (2012) DynaMo—software for vibration based structural health monitoring. In: Bridge maintenance, safety, management, resilience and sustainability—proceedings of the sixth international conference on bridge maintenance, safety and management

    Google Scholar 

  54. Magalhães F, Cunha A (2011) Explaining operational modal analysis with data from an arch bridge. Mech Syst Signal Process 25(5):1431–1450

    Article  Google Scholar 

  55. Oliveira G, Magalhães F Cunha A, Caetano E (2018) Vibration based damage detection in a wind turbine using one year of data. Struct Control Health Monit (in press). https://doi.org/10.1002/stc.2238

  56. Magalhães F, Cunha A, Caetano E (2012) Vibration based structural health monitoring of an arch bridge: from automated OMA to damage detection. Mech Syst Signal Process 28:212–228

    Article  Google Scholar 

  57. LNEC (2017) Barragem do Baixo Sabor. Caracterização do comportamento dinâmico através da realização de ensaios de vibração forçada em maio de 2016 com a albufeira à cota 234,0 m. (In Portuguese)

    Google Scholar 

  58. Gomes J, Lemos JV (2016) Characterization of the dynamic behavior of an arch dam by means of forced vibration tests. In 1st meeting of EWG dams and earthquakes. Balkema: Saint Malo, France

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by: UID/ECI/04708/2019—CONSTRUCT—Instituto de I&D em Estruturas e Construções funded by national funds through the FCT/MCTES (PIDDAC), PTDC/ECM-EST/0805/2014|16761 and PTDC/ECM-EST/2110/2014|16877, funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cunha, Á., Caetano, E., Magalhães, F., Moutinho, C., Pereira, S. (2021). Dynamic Testing and Continuous Dynamic Monitoring of Transportation, Stadia and Energy Infrastructures. In: Rainieri, C., Fabbrocino, G., Caterino, N., Ceroni, F., Notarangelo, M.A. (eds) Civil Structural Health Monitoring. CSHM 2021. Lecture Notes in Civil Engineering, vol 156. Springer, Cham. https://doi.org/10.1007/978-3-030-74258-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74258-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74257-7

  • Online ISBN: 978-3-030-74258-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics