Skip to main content

Biopesticides: Microbes for Agricultural Sustainability

  • Chapter
  • First Online:
Soil Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 27))

Abstract

The human population is growing over time. In this regard, the agricultural yield should be improved and effective strategies must be intended to minimize crop loss to meet the food demand of this population. One of the detrimental groups that adversely affect agricultural yield is pest. Therefore, pesticide application can be considered as a promising approach in diminishing pests corresponding to damages to agricultural yield. Although improper and extensive usage of non-biodegradable chemical pesticides can adversly affect ecosystem and health of human, animal and non-target organisms. Therefore, alternative strategies should be considered to augment plant growth, preserve agricultural yield and compensate for reduced consumption of chemical fertilizers. The most suitable substituent for chemical pesticides is biopesticides. They are formulated pesticides containing various microorganisms (nematodes, bacteria, fungi and viruses) or plant, animal, bacteria and fungi-derived compounds that ecofriendly control insect, weed, nematode and plant disease by various mechanisms and, therefore, gaining importance all over the world. Some of the biopesticides have equal efficiency comparing with chemical pesticides while having no pathogenicity or toxicity on non-target micro- and macroorganisms, so they can be applied near harvesting time. In addition, due to their decomposability feature, they do not remain in agricultural products and do not compromise air, groundwater and soil quality. Microorganisms in biopesticides impose their effects via producing antimicrobial compounds, lytic enzymes or compete with phytopathogens for uptake nutrients, attachment, establishment, and colonization on plants. Interfering in communication of pathogens via degrading of chemical signal messenger or inducing resistance in plants are other strategies which are applied by biofertilizers. In this chapter, we reviewed the types of biofertilizers, their mode action and their limitation as well as molecular and culture-based monitoring strategies, fermentation procedures by which microbial cells are multiplied, types of formulation, their advantages and limitation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadias M, Usall J, Teixidó N, Viñas I (2003) Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology 93:436–442

    Google Scholar 

  • Adams JR (1991) Baculoviridae. Nuclear polyhedrosis viruses. Part 1. Nuclear polyhedrosis viruses of insects. Atlas of invertebrate viruses

    Google Scholar 

  • Arthurs SP, Lacey LA, Miliczky ER. Evaluation of the codling moth granulovirus and spinosad for codling moth control and impact on non-target species in pear orchards. Biol Control 41:99–109

    Google Scholar 

  • Aumeran C, Paillard C, Robin F, Kanold J, Baud O, Bonnet R et al (2007) Pseudomonas aeruginosa and Pseudomonas putida outbreak associated with contaminated water outlets in an oncohaematology paediatric unit. J Hosp Infect 65:47–53

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan K, Pandey A (1996) Influence of amino acids on the biosynthesis of cyclosporin A by Tolypocladium inflatum. Appl Microbiol Biotechnol 45:800–803

    Article  CAS  Google Scholar 

  • Barnawal DBN, Tripathi A, Pandey SS, Chanotiya CS, Kalra A (2016) ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35:553–564

    Article  CAS  Google Scholar 

  • Barr D (2001) Chytridiomycota. In: Systematics and evolution. Springer, pp 93–112

    Google Scholar 

  • Bashan YHJ, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368

    Article  Google Scholar 

  • Batta Y (2004) Postharvest biological control of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion. Crop Protect 23:19–26

    Article  Google Scholar 

  • Bedding RMA (1982) Penetration of insect cuticle by infective juveniles of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica 28:354–359

    Article  Google Scholar 

  • Bonaterra A, Camps J, Montesinos E (2005) Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. FEMS Microbiol Lett 250:1–8

    Article  CAS  PubMed  Google Scholar 

  • Brownbridge M, Margalit J (1987) Mosquito active strains of Bacillus sphaericus isolated from soil and mud samples collected in Israel. J Invertebr Pathol 50:106–112

    Article  CAS  PubMed  Google Scholar 

  • Burges HJ (1998) Formulations of bacteria, viruses and protozoa to control insects. Burgues, HD Formulation of microbial pesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publishers, Norwell, MA, USA, pp 33–127

    Google Scholar 

  • Byrappa AMKN, Divya M (2012) Impact of biopesticides application on pod borer complex in organically grown field bean ecosystem. J Biopestic 5:148–160

    Google Scholar 

  • Laben C (1965) Epiphytic microorganisms in relation to plant disease. Annu Rev Phytopathol 3:209–230

    Google Scholar 

  • C R-R (2012) Trends for commercialization of biocontrol agent (biopesticide) products. In: Plant defence: biological control. Springer, Dordrecht, pp 139–160

    Google Scholar 

  • Cabrefiga J, Francés J, Montesinos E, Bonaterra A (2011) Nutritional enhancement combined with osmoadaptation improve fitness and efficacy of a fire blight biocontrol agent. Appl Environ Microbiol

    Google Scholar 

  • Cartwright DK, Chilton W, Benson D (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5 B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216

    Article  CAS  Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60

    Article  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B: Biol Sci 366:1987–1998

    Article  Google Scholar 

  • Charles J-F, Hamon S, Baumann P (1993) Inclusion bodies and crystals of Bacillus sphaericus mosquitocidal proteins expressed in various bacterial hosts. Res Microbiol 144:411–416

    Article  CAS  PubMed  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  CAS  PubMed  Google Scholar 

  • Czaja K, Góralczyk K, Struciński P, Hernik A, Korcz W, Minorczyk M et al (2015) Biopesticides–towards increased consumer safety in the European Union. Pest Manag Sci 71:3–6

    Article  CAS  PubMed  Google Scholar 

  • De Clercq D, Cognet S, Pujol M, Lepoivre P, Jijakli M (2003) Development of a SCAR marker and a semi-selective medium for specific quantification of Pichia anomala strain K on apple fruit surfaces. Postharvest Biol Technol 29:237–247

    Article  CAS  Google Scholar 

  • Deedat YD (1994) Problems associated with the use of pesticides: an overview. Int J Trop Insect Sci 15:247–251

    Article  CAS  Google Scholar 

  • Dhaliwal GS KO, Khokhar SU, Singh R (2012) Biopesticides: Springboard to environment and food security. Biopestic Environ Food Secur: Iss Strateg 1–1

    Google Scholar 

  • Diaz MP, Macias AF, Navarro SR, de la Torres M (2006) Mechanism of action of entomopathogenic fungi. Interciencia 31:856–860

    Google Scholar 

  • DJ R (1993) Formulation of biological control agents. In: Exploitation of microorganisms. Springer, Dordrecht, pp 411–439

    Google Scholar 

  • Doube B, Ryder M, Davoren C, Meyer T (1995) Monitoring of biocontrol agents and genetically engineered microorganisms in the environment: biotechnological approaches

    Google Scholar 

  • Dowd PF (2001) Antiinsectan compounds derived from microorganisms. In: Microbial biopesticides. CRC Press, pp 20–127

    Google Scholar 

  • Druvefors UÄ, Passoth V, Schnürer J (2005) Nutrient effects on biocontrol of Penicillium roqueforti by Pichia anomala J121 during airtight storage of wheat. Appl Environ Microbiol 71:1865–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Abbassi A, Saadaoui N, Kiai H, Raiti J, Hafidi A (2017) Potential applications of olive mill wastewater as biopesticide for crops protection. Sci Total Environ 576:10–21

    Article  CAS  PubMed  Google Scholar 

  • El-Sheikh EAMM, Ragheb DA, Ashour MB (2011a) Potential of Juvenile Hormone Esterase as a bio-insecticide: an overview. Egypt J Biol Pest Control 21:103–110

    Google Scholar 

  • El-Sheikh ESKS, Vu K, Hammock BD (2011b) Improved insecticidal efficacy of a recombinant baculovirus expressing mutated JH esterase from Manduca sexta. Biol Control 58:354–361

    Article  CAS  Google Scholar 

  • Elvira SWT, Caballero P (2010) Juvenile hormone analog technology: effects on larval cannibalism and the production of Spodoptera exigua (Lepidoptera: Noctuidae) nucleopolyhedrovirus. J Econ Entomol 103:577–582

    Article  PubMed  Google Scholar 

  • Eski A, Demir İ, Sezen K, Demirbağ Z (2017) A new biopesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J Microbiol Biotechnol 33:95

    Google Scholar 

  • Fan H, Ru J, Zhang Y, Wang Q, Li Y (2017) Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 199:89–97

    Article  CAS  PubMed  Google Scholar 

  • Fao F (2012) Agriculture Organization of the United Nations. 2012. FAO statistical yearbook

    Google Scholar 

  • Fernando SD, Karunaratne M (2012) Ethnobotanicals for storage pest management: effect of powdered leaves of Olax zeylanica in suppressing infestations of rice weevil Sitophilus oryzae (Coleoptera: Curculionidae). J Trop For Environ 2

    Google Scholar 

  • Ferreira TMA (2014) Xenorhabdus and Photorhabdus, bacterial symbionts of the entomopathogenic nematodes Steinernema and Heterorhabditis and their in vitro liquid mass culture: a review. African Entomol 22:1–14

    Article  Google Scholar 

  • Ferron P (1971) Modification of the development of Beauveria tenella mycosis in Melolontha melolontha larvae, by means of reduced doses of organophosphorus insecticides. Entomol Exp Appl 14:457–466

    Article  CAS  Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1997) Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Curr Genet 31:30–37

    Article  CAS  PubMed  Google Scholar 

  • Francés J, Bonaterra A, Moreno M, Cabrefiga J, Badosa E, Montesinos E (2006) Pathogen aggressiveness and postharvest biocontrol efficiency in Pantoea agglomerans. Postharvest Biol Technol 39:299–307

    Article  Google Scholar 

  • GF R (2013) Baculovirus molecular biology, 3rd ed (Internet). Bethesda (MD): National Center for Biotechnology Information (US)

    Google Scholar 

  • Ghabrial SA, Suzuki N (2009) Viruses of plant pathogenic fungi. Annu Rev Phytopathol 47:353–384

    Article  CAS  PubMed  Google Scholar 

  • Girlanda M, Perotto S, Moenne-Loccoz Y, Bergero R, Lazzari A, Defago G et al (2001) Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67:1851–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gostinčar C, Grube M, Gunde-Cimerman N (2011) Evolution of fungal pathogens in domestic environments? Fungal Biol 115:1008–1018

    Article  PubMed  Google Scholar 

  • Grewal PS ER, Shapiro-Ilan DI (2005) Nematodes as biocontrol agents. CABI

    Google Scholar 

  • Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Nematodes as biocontrol agents. CABI

    Google Scholar 

  • Guetsky R, Elad Y, Shtienberg D, Dinoor A (2002) Improved biocontrol of Botrytis cinerea on detached strawberry leaves by adding nutritional supplements to a mixture of Pichia guilermondii and Bacillus mycoides. Biocontrol Sci Tech 12:625–630

    Article  Google Scholar 

  • Gullino ML, Kuijpers LA (1994) Social and political implications of managing plant diseases with restricted fungicides in Europe. Annu Rev Phytopathol 32:559–581

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Dikshit A (2010) Biopesticides: An ecofriendly approach for pest control. J Biopestic 3:186

    Google Scholar 

  • Harman JA, Mao CX, Morse JG (2007) Selection of colour of sticky trap for monitoring adult bean thrips, Caliothrips fasciatus (Thysanoptera: Thripidae). Pest Manag Sci: Formerly Pesticide Sci 63:210–216

    Article  CAS  Google Scholar 

  • Herniou E, Arif B, Becnel J, Blissard G, Bonning B, Harrison R et al. (2011) Baculoviridae. Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses, pp 163–173

    Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Immaraju JA (1998) The commercial use of azadirachtin and its integration into viable pest control programmes. Pestic Sci 54:285–289

    Article  CAS  Google Scholar 

  • Ishikawa S (2013) Integrated disease management of strawberry anthracnose and development of a new biopesticide. J Gen Plant Pathol 79:441–443

    Article  Google Scholar 

  • Ishimaru CA, Klos EJ, Brubaker RR (1988) Multiple antibiotic production by Erwinia herbicola. Phytopathology 78:746–750

    Article  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Joußen NAS, Lorenz S, Schöne SE, Ellinger R, Schneider B, Heckel DG (2012) Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proc Natl Acad Sci 109:15206–15211

    Article  PubMed  PubMed Central  Google Scholar 

  • Kachhawa D (2017) Microorganisms as a biopesticides. J Entomol Zool Stud 5:468–473

    Google Scholar 

  • Kawalekar JS (2013) Role of biofertilizers and biopesticides for sustainable agriculture. J Bio Innov 2:73–78

    Google Scholar 

  • Kellen WR, Clark TB, Lindegren JE, Ho BC, Rogoff MH, Singer S (1965) Bacillus sphaericus Neide as a pathogen of mosquitoes. J Invertebr Pathol 7:442–448

    Article  CAS  PubMed  Google Scholar 

  • Khater HF (2012) Prospects of botanical biopesticides in insect pest management. Pharmacologia 3:641–656

    Article  Google Scholar 

  • Kirst HA (2010) The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 63:101

    Article  CAS  Google Scholar 

  • Kogan M, Metcalf R, Luckmann W (1982) Introduction to insect pest management. In: Metcalf RL, Luckman WH (eds) pp 103–146

    Google Scholar 

  • Koul O (2011) Microbial biopesticides: opportunities and challenges. CAB Rev 6:1–26

    Article  Google Scholar 

  • Koul O, Dhaliwal G (2003) Microbial biopesticides vol 2. CRC Press

    Google Scholar 

  • Koul O, Dhaliwal G, Koul K (2001) Phytochemical biopesticides. Advances in biopesticide research. CRC Press, Singapore

    Google Scholar 

  • Kovach J PC, Degni J, Tette J (1992) A method to measure the environmental impact of pesticides

    Google Scholar 

  • Krieg A, Franz JM, Gröner A, Huber J, Miltenburger HG (1980) Safety of entomopathogenic viruses for control of insect pests. Environ Conserv 7:158–160

    Article  Google Scholar 

  • Kumar V (2015) A review on efficacy of biopesticides to control the agricultural insect’s pest. Int J Agric Sci Res 4:168–179

    Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6:100–129

    Article  Google Scholar 

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol 31: https://doi.org/10.1016/j.bcab.2020.101883

    Article  Google Scholar 

  • Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44:218

    PubMed  PubMed Central  Google Scholar 

  • Lambert B, Höfte H, Annys K, Jansens S, Soetaert P, Peferoen M (1992) Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl Environ Microbiol 58:2536–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larena IMP, Cal AD (2003) Drying of conidia of Penicillium oxalicum, a biological control agent against Fusarium Wilt of Tomato. J Phytopathol 151:600–606

    Article  Google Scholar 

  • Lugtenberg B, Leveau J (2007) 10 Biocontrol of plant pathogens: principles, promises, and pitfalls. The rhizosphere: biochemistry and organic substances at the soil-plant interface 267

    Google Scholar 

  • Luttrell RGJR (2012) Helicoverpa zea and Bt cotton in the United States. GM Crops 3:213–227

    Article  Google Scholar 

  • Malusà E, Pinzari F, Canfora L (2016) Efficacy of biofertilizers: challenges to improve crop production. In: Microbial inoculants in sustainable agricultural productivity. Springer, pp 17–40

    Google Scholar 

  • Marrone P (2014) The market and potential for biopesticides. Biopesticides: state of the art and future opportunities 1172:245–258

    Google Scholar 

  • Mazid S, Kalita JC, Rajkhowa RC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1:169–178

    Google Scholar 

  • Meadows M (1993) Bacillus thuringiensis in the environment: ecology and risk assessment. Bacillus thuringiensis, an environmental biopesticide: theory and practice 193–220

    Google Scholar 

  • Mensah R, Moore C, Watts N, Deseo MA, Glennie P, Pitt A (2014) Discovery and development of a new semiochemical biopesticide for cotton pest management: assessment of extract effects on the cotton pest Helicoverpa spp. Entomol Exp Appl 152:1–15

    Article  Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136

    Article  CAS  PubMed  Google Scholar 

  • Mills NJKJ (2010) Behavioral studies, molecular approaches, and modeling: methodological contributions to biological control success. Biol Control 52:255–262

    Article  Google Scholar 

  • Mironidis GKKD, Bentila M, Morou E, Savopoulou-Soultani M, Vontas J (2013) Resurgence of the cotton bollworm Helicoverpa armigera in northern Greece associated with insecticide resistance. Insect Sci 20:505–512

    Article  CAS  PubMed  Google Scholar 

  • Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E, Bonaterra A (1996) Dose-response models in biological control of plant pathogens: an empirical verification. Phytopathology

    Google Scholar 

  • Moore N, King L, Possee R (1987) Viruses of insects. Int J Trop Insect Sci 8:275–289

    Article  Google Scholar 

  • Morris O, Kanagaratnam P, Converse V (1997) Suitability of 30 agricultural products and by-products as nutrient sources for laboratory production of Bacillus thuringiensis subsp. aizawai (HD133). J Invertebr Pathol 70:113–120

    Article  CAS  PubMed  Google Scholar 

  • Moscardi F dSM, de Castro ME, Moscardi ML, Szewczyk B (2011) Baculovirus pesticides: present state and future perspectives. In: Microbes and microbial technology. Springer, New York, pp 415–445

    Google Scholar 

  • Mushobozi WL, Grzywacz D, Musebe R, Kimani M, Wilson K (2005) New approaches to improve the livelihoods of poor farmers and pastoralists in Tanzania through monitoring and control of African armyworm, Spodoptera exempta. Asp Appl Biol 75:35–37

    Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko EE (2009) Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). J Stored Prod Res 45:212–214

    Article  CAS  Google Scholar 

  • O K (2012) Plant biodiversity as a resource for natural products for insect pest management. In Gurr GM, Wratten SD, Snyder WE, Read, DMY (eds) Biodiversity and insect pests: key issues for sustainable management. Wiley, Sussex, UK, pp 85–105

    Google Scholar 

  • O’Brien KP, Franjevic S, Jones J (2009) Green chemistry and sustainable agriculture: the role of biopesticides. Adv Green Chem. http://advancinggreenchemistryorg/wp-content/uploads/Green-Chem-and-Sus-Ag-the-Role-of-Biopesticidespdf

    Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag 26:203–206

    Article  Google Scholar 

  • Padin SB, Fuse CB, Urrutia MI, Dal Bello G (2013) Toxicity and repellency of nine medicinal plants against Tribolium castaneum in stored wheat

    Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  CAS  PubMed  Google Scholar 

  • Pascual SDCA, Magan N, Melgarejo P (2000) Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. J Appl Microbiol 89:847–853

    Article  CAS  PubMed  Google Scholar 

  • Pavela R, Waffo-Teguo P, Biais B, Richard T, Mérillon J-M (2017) Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae. J Pest Sci 90:961–970

    Article  Google Scholar 

  • Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586

    Article  CAS  PubMed  Google Scholar 

  • Plimmer JR (1999) Analysis, monitoring, and some regulatory implications. In: Biopesticides: use and delivery. Springer, pp 529–552

    Google Scholar 

  • Powell KA, Jutsum AR (1993) Technical and commercial aspects of biocontrol products. Pestic Sci 37:315–321

    Article  Google Scholar 

  • Pucheta DMMA, Navarro SR (2016) Mechanism of action of entomopathogenic fungi. Interciencia 156:2164–2171

    Google Scholar 

  • Rezzonico F, Smits TH, Montesinos E, Frey JE, Duffy B (2009) Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 9:204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhodes DJ, Guest PJ, Blenk RG (1997) Biological control agent. Google Patents

    Google Scholar 

  • Ritter S (2009) Pinpointing trends in pesticide use. Chem Eng News 87

    Google Scholar 

  • Roy A, Moktan B, Sarkar PK (2007) Characteristics of Bacillus cereus isolates from legume-based Indian fermented foods. Food Control 18:1555–1564

    Article  CAS  Google Scholar 

  • Samson R, Evans H, Latgé J (1988) Atlas of entomopathogenic fungi. Springer, New York

    Google Scholar 

  • Sarwar MAN, Tofique M (2012) Potential of plant materials for the management of cowpea bruchid Callosobruchus analis (Coleoptera: Bruchidae) in gram Cicer arietinum during storage. Nucleus (Islamabad) 49:61–64

    Google Scholar 

  • Sarwar M, Sattar M (2012) Appraisal of different plant products against Trogoderma granarium Everts to protect stored wheat-A laboratory comparison. Nucleus (Islamabad) 49:65–69

    Google Scholar 

  • Schisler DASP, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Nathan S (2015) A review of biopesticides and their mode of action against insect pests. In: Environmental sustainability. Springer, pp 49–63

    Google Scholar 

  • Shapiro-Ilan DIGD, Piggott SJ, Patterson Fife J (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol Control 38:124–133

    Article  Google Scholar 

  • Sharma SMP (2012) Biopestcides: types and applications. Int J Adv Pharmacy Biol Chem 1:508–515

    Google Scholar 

  • Sharma H, Sharma K, Seetharama N, Ortiz R (2001) Genetic transformation of crop plants: risks and opportunities for the rural poor. Curr Sci 80:1495–1508

    CAS  Google Scholar 

  • Sharma R, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 1: Diversity and enzymes perspectives. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer Singapore, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

  • Shi W-B, Feng M-G (2004) Lethal effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biol Control 30:165–173

    Article  Google Scholar 

  • Siegel JPMJ, Ruesink WG (1986) Lethal and sublethal effects of Nosema pyrausta on the European corn borer (Ostrinia nubilalis) in central Illinois. J Invertebr Pathol 48:167–173

    Article  Google Scholar 

  • Smith A, Gangolli S (2002) Organochlorine chemicals in seafood: occurrence and health concerns. Food Chem Toxicol 40:767–779

    Article  CAS  PubMed  Google Scholar 

  • Smits TH, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA, Stockwell VO et al (2010) Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J Bacteriol 192:6486–6487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solter L, Becnel J, Oi D (2012) Microsporidian entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edition. Academic Press, Elsevier Inc., San Diego, pp 1–490

    Google Scholar 

  • Spadaro D, Gullino ML (2004) State of the art and future prospects of the biological control of postharvest fruit diseases. Int J Food Microbiol 91:185–194

    Article  PubMed  Google Scholar 

  • Srivastava K, Dhaliwal G (2010) A textbook of applied entomology. Kalyani Publishers

    Google Scholar 

  • Stevenson PC, Nyirenda SP, Mvumi B, Sola P, Kamanula JF, Sileshi G et al (2012) Pesticidal plants: a viable alternative insect pest management approach for resource-poor farming in Africa. Biopestic Environ Food Secur: Iss Strateg 212–238

    Google Scholar 

  • Stockwell V, Johnson K, Sugar D, Loper J (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–123

    Article  CAS  PubMed  Google Scholar 

  • Sundin GW, Werner NA, Yoder KS, Aldwinckle HS (2009) Field evaluation of biological control of fire blight in the eastern United States. Plant Dis 93:386–394

    Article  CAS  PubMed  Google Scholar 

  • Tanada Y, Kaya HK (2012) Insect pathology. Academic Press

    Google Scholar 

  • Teixidó N, Viñas I, Usall J, Magan N (1998) Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar content. Mycol Res 102:1409–1417

    Article  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Thakur M, Chandla V (2013) Evaluation of bio-pesticides for potato tuber moth control, Phthorimaea opercullela (zeller) under polyhouse and rustic storage conditions. Potato J 40

    Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: Current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

  • Usta C (2013) Microorganisms in biological pest control—a review (bacterial toxin application and effect of environmental factors). In: Current progress in biological research. IntechOpen

    Google Scholar 

  • Van Elsas J, Duarte G, Rosado A, Smalla K (1998) Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Methods 32:133–154

    Article  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed  PubMed Central  Google Scholar 

  • Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I et al (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99:4983–4996

    Article  CAS  PubMed  Google Scholar 

  • Wakefield M, Moore D, Luke B, Taylor B, Storm C, Collins D et al (2010) Progress in the development of a biopesticide for the structural treatment of grain stores. Julius-Kühn-Archiv 760–765

    Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  CAS  PubMed  Google Scholar 

  • Witzgall PKP, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecolo 36:80–100

    Article  CAS  Google Scholar 

  • WJ R (2011) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Springer Science & Business Media, pp 171–233

    Google Scholar 

  • WM B (1988) Entomogenous protozoa. Handbook of natural pesticides. Microbial insecticides, Part A. In: Ignoffo CM, Mandava NB (eds) Entomogenous protozoa and fungi. CRC Press, Baco Raton, FL, pp 1–149

    Google Scholar 

  • Wright SA, Beer S (2001) Genes for biosynthesis of pantocin A and B by Pantoea agglomerans Eh318. In: IX International workshop on fire blight 590, 2001, pp 237–241

    Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/JABB.2021.91ed

    Article  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2021) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yang MM, Li ML, Zhang Y, Wang YZ, Qu LJ, Wang QH, Ding JY (2012) Baculoviruses and insect pests control in China. African J Microbiol Res 16:214–218

    Google Scholar 

  • Yankanchi S, Gadache A (2010) Grain protectant efficacy of certain plant extracts against rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae). J Biopestic 3:511–513

    Google Scholar 

  • Zhang X, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci 103:9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Hamedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salimi, F., Hamedi, J. (2021). Biopesticides: Microbes for Agricultural Sustainability. In: Yadav, A.N. (eds) Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-73507-4_15

Download citation

Publish with us

Policies and ethics