Skip to main content

Self-secure Communication for Internet of Things

  • Conference paper
  • First Online:
Edge Computing and IoT: Systems, Management and Security (ICECI 2020)

Abstract

Cryptographic key management is a challenge for the large scale deployment of Internet of Things (IoT) devices. It is difficult to properly setup and constantly update keys for numerous IoT devices, especially when these devices are restricted by size and lack of the key input interface. This paper proposes a lightweight key management scheme which embeds the key distribution and update process into the communication process. The keys are constantly changing as the communication data flowing back and forth between IoT devices. Therefore even if a key is stolen by the attacker, it will quickly become invalid as the communication goes on. The proposed scheme also contains a key initialization protocol which generates independent keys for multiple IoT devices simultaneously. This paper describes the protocols in detail and analyzes its security properties. The practicality of the protocol is verified by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashton, K.: That ‘Internet of Things’ thing. RFID J. 101-1 (2009)

    Google Scholar 

  2. Xia, F., Yang, L.T., et al.: Internet of Things. Int. J. Commun. Syst. 25, 1101–1102 (2012)

    Google Scholar 

  3. Alabaa, F.A., Othmana, M., et al.: Internet of Things security: a survey. J. Netw. Comput. Appl. 88, 10–28 (2017)

    Article  Google Scholar 

  4. Romana, R., Alcaraza, C., et al.: Key management systems for sensor networks in the context of the Internet of Things. Comput. Electr. Eng. 37, 147–159 (2011)

    Article  Google Scholar 

  5. Jie, C., Liang, Y.-C., et al.: Intelligent reflecting surface: a programmable wireless environment for physical layer security. IEEE Access 7, 82599–82612 (2019)

    Article  Google Scholar 

  6. Pinto, T., Gomes, M., et al.: Polar coding for physical-layer security without knowledge of the eavesdropper’s channel. In: 2019 IEEE 89th Vehicular Technology Conference (VTC 2019-Spring), pp. 1–5, IEEE, Kuala Lumpur (2019)

    Google Scholar 

  7. Xiang, Z., Yang, W., et al.: Physical layer security in cognitive radio inspired NOMA network. IEEE J. Sel. Top. Sig. Process. 13(3), 700–714 (2019)

    Article  Google Scholar 

  8. Melki, R., et al.: A survey on OFDM physical layer security. Phys. Commun. 32, 1–30 (2019)

    Article  Google Scholar 

  9. Shen, J., Moh, S., et al.: A novel key management protocol in body area networks. In: ICNS 2011: The Seventh International Conference on Networking and Services, pp. 246–251 (2011)

    Google Scholar 

  10. Li, Y.: Design of a key establishment protocol for smart home energy management system. In: 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, pp. 88–93. IEEE, Madrid (2013)

    Google Scholar 

  11. Sciancalepore, S., Capossele, A., et al.: Key management protocol with implicit certificates for IoT systems. In: IoT-Sys 2015, Proceedings of the 2015 Workshop on IoT Challenges in Mobile and Industrial Systems, pp. 37–42. Association for Computing Machinery, New York (2015)

    Google Scholar 

  12. Saied, Y.B., Olivereau, A.,: D-HIP: a distributed key exchange scheme for HIP-based Internet of Things. In: 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–7. IEEE, San Francisco (2012)

    Google Scholar 

  13. Riyadh, M., Affiliated, A., Djamel, T.: A cooperative end to end key management scheme for e-health applications in the context of Internet of Things. Ad-hoc Netw. Wirel. 8629, 35–46 (2015)

    Article  Google Scholar 

  14. Porambage, P., Braeken, A., et al.: Proxy-based end-to-end key establishment protocol for the Internet of Things. In: 2015 IEEE International Conference on Communication Workshop (ICCW), pp. 2677–2682. IEEE, London (2015)

    Google Scholar 

  15. Veltri, L., Cirani, S., et al.: A novel batch-based group key management protocol applied to the Internet of Things. Ad Hoc Netw. 11(8), 2724–2737 (2013)

    Article  Google Scholar 

  16. Abdmeziem, M.R., Tandjaoui, D., et al.: A decentralized batch-based group key management protocol for mobile Internet of Things (DBGK). In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 1109–1117. IEEE, Liverpool (2015)

    Google Scholar 

  17. Jing, Q., Vasilakos, A.V., Wan, J., Lu, J., Qiu, D.: Security of the Internet of Things: perspectives and challenges. Wirel. Netw. 20(8), 2481–2501 (2014). https://doi.org/10.1007/s11276-014-0761-7

    Article  Google Scholar 

  18. He, X., Niedermeie, M., et al.: Dynamic key management in wireless sensor networks: a survey. J. Netw. Comput. Appl. 36(2), 611–622 (2013)

    Article  Google Scholar 

  19. Varalakshmi, R., Uthariaraj, V.R.: Huddle hierarchy based group key management protocol using gray code. Wirel. Netw. 20(4), 695–704 (2013). https://doi.org/10.1007/s11276-013-0631-8

    Article  Google Scholar 

  20. Conti, M., Dehghantanha, A., et al.: Internet of Things security and forensics: challenges and opportunities. Future Gener. Comput. Syst. 78, 544–546 (2018)

    Article  Google Scholar 

  21. Al-Sarawi, S., Anbar, M., et al.: Internet of Things (IoT) communication protocols: review. In: 2017 8th International Conference on Information Technology (ICIT), pp. 685–690. IEEE, Amman (2017)

    Google Scholar 

  22. Li, Y.: Design of a key establishment protocol for smart home energy management system. In: 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, Madrid, , pp. 88–93 (2013)

    Google Scholar 

  23. Nguyen, K.T., Laurent, M., et al.: Survey on secure communication protocols for the Internet of Things. Ad Hoc Netw. 32, 17–31 (2015)

    Article  Google Scholar 

  24. Abdmeziem, M.R., Tandjaoui, D.: An end-to-end secure key management protocol for e-health applications. Comput. Electr. Eng. 44, 184–197 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, B., Xiao, S. (2021). Self-secure Communication for Internet of Things. In: Jiang, H., Wu, H., Zeng, F. (eds) Edge Computing and IoT: Systems, Management and Security. ICECI 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 368. Springer, Cham. https://doi.org/10.1007/978-3-030-73429-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73429-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73428-2

  • Online ISBN: 978-3-030-73429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics