Skip to main content

Health Benefits of Turmeric and Curcumin Against Food Contaminants

  • Chapter
  • First Online:
Natural Products and Human Diseases

Abstract

Food contaminants are one of the most important and concerning issues worldwide. Protecting the public from the harm of contaminated foods has become a daunting task. On the other hand, the elimination of these contaminants from food seems impossible. Therefore, one of the best solutions is to recommend inexpensive and publicly available food additives like many spices used in food as flavoring and coloring. Curcuma longa or turmeric is one of the well-known spice, which confers many medicinal properties. Curcumin is the main active ingredient in turmeric, which has many health benefits. Recent research has revealed that turmeric/curcumin has protective effects against toxicants, mostly natural and chemical toxins. In this review article, we reviewed studies related to the protective effects of turmeric and its active ingredient against food contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salter, S. J. (2014). The food-borne identity. Nature Reviews. Microbiology, 12(8), 533.

    Article  CAS  PubMed  Google Scholar 

  2. Robertson, L. J., Sprong, H., Ortega, Y. R., van der Giessen, J. W., & Fayer, R. (2014). Impacts of globalisation on foodborne parasites. Trends in Parasitology, 30(1), 37–52.

    Article  PubMed  Google Scholar 

  3. Havelaar, A. H., Cawthorne, A., Angulo, F., Bellinger, D., Corrigan, T., Cravioto, A., et al. (2013). WHO initiative to estimate the global burden of foodborne diseases. The Lancet, 381S59.

    Google Scholar 

  4. Song, Q., Zheng, Y.-J., Xue, Y., Sheng, W.-G., & Zhao, M.-R. (2017). An evolutionary deep neural network for predicting morbidity of gastrointestinal infections by food contamination. Neurocomputing, 22616–22622.

    Google Scholar 

  5. Control CfD, Prevention. (2013). Surveillance for foodborne disease outbreaks–United States, 2009–2010. MMWR. Morbidity and Mortality Weekly Report, 62(3), 41.

    Google Scholar 

  6. Tirima, S., Bartrem, C., von Lindern, I., von Braun, M., Lind, D., Anka, S. M., et al. (2018). Food contamination as a pathway for lead exposure in children during the 2010-2013 lead poisoning epidemic in Zamfara, Nigeria. Journal of Environmental Sciences (China), 67260–67272.

    Google Scholar 

  7. Soleimani, V., Sahebkar, A., & Hosseinzadeh, H. (2018). Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. Phytotherapy Research, 32(6), 985–995.

    Article  CAS  PubMed  Google Scholar 

  8. Rezvanirad, A., Mardani, M., Ahmadzadeh, S. M., Asgary, S., Naimi, A., & Mahmoudi, G. (2016). Curcuma longa: A review of therapeutic effects in traditional and modern medical references. Journal of Chemical and Pharmaceutical Sciences, 9(4), 3438–3448.

    CAS  Google Scholar 

  9. Andrew, R., & Izzo, A. A. (2017). Principles of pharmacological research of nutraceuticals. British Journal of Pharmacology, 174(11), 1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qin, S., Huang, L., Gong, J., Shen, S., Huang, J., Ren, H., et al. (2017). Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials. Nutrition Journal, 16(1), 68.

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Melo, I. S. V., dos Santos, A. F., & Bueno, N. B. (2018). Curcumin or combined curcuminoids are effective in lowering the fasting blood glucose concentrations of individuals with dysglycemia: Systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 128, 137–144.

    Article  PubMed  Google Scholar 

  12. Daily, J. W., Yang, M., & Park, S. (2016). Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. Journal of Medicinal Food, 19(8), 717–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Farzaei, M. H., Zobeiri, M., Parvizi, F., El-Senduny, F. F., Marmouzi, I., Coy-Barrera, E., et al. (2018). Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10(7), 855.

    Article  PubMed Central  Google Scholar 

  14. McQuade RM (2015) The therapeutic role of turmeric in treatment and prevention of Alzheimer’s disease.

    Google Scholar 

  15. Ng, Q. X., Koh, S. S. H., Chan, H. W., & Ho, C. Y. X. (2017). Clinical use of curcumin in depression: A meta-analysis. Journal of the American Medical Directors Association, 18(6), 503–508.

    Article  PubMed  Google Scholar 

  16. Bagheri, H., Ghasemi, F., Barreto, G. E., Rafiee, R., Sathyapalan, T., & Sahebkar, A. (2020). Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors, 46(1), 5–20.

    Article  CAS  PubMed  Google Scholar 

  17. Ghandadi, M., & Sahebkar, A. (2017). Curcumin: An effective inhibitor of interleukin-6. Current Pharmaceutical Design, 23(6), 921–931.

    Article  CAS  PubMed  Google Scholar 

  18. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L.E., Majeed, M., et al. (2018). Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Research, 68(7), 403-409.

    Google Scholar 

  19. Iranshahi, M., Sahebkar, A., Hosseini, S. T., Takasaki, M., Konoshima, T., & Tokuda, H. (2010). Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine, 17(3–4), 269–273. 

    Google Scholar 

  20. Ghasemi, F., Shafiee, M., Banikazemi, Z., Pourhanifeh, M.H., Khanbabaei, H., Shamshirian, A., et al. (2019). Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology Research and Practice, 215(10), art. no. 152556.

    Google Scholar 

  21. Momtazi, A. A., Derosa, G., Maffioli, P., Banach, M., & Sahebkar, A. (2016). Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Molecular Diagnosis and Therapy, 20(4), 335–345.

    Article  CAS  PubMed  Google Scholar 

  22. Panahi, Y., Ahmadi, Y., Teymouri, M., Johnston, T. P., & Sahebkar, A. (2018). Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. Journal of Cellular Physiology, 233(1), 141–152.

    Article  CAS  PubMed  Google Scholar 

  23. Bianconi, V., Sahebkar, A., Atkin, S.L., & Pirro, M. (2018). The regulation and importance of monocyte chemoattractant protein-1. Current Opinion in Hematology, 25(1), 44–51.

    Google Scholar 

  24. Teymouri, M., Pirro, M., Johnston, T. P., & Sahebkar, A. (2017). Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. BioFactors, 43(3), 331–346.

    Article  CAS  PubMed  Google Scholar 

  25. Ahsan, R., Arshad, M., Khushtar, M., Ahmad, M. A., Muazzam, M., Akhter, M. S., et al. (2020). A comprehensive review on physiological effects of curcumin. Drug Research (Stuttg), 70(10), 441–447.

    Article  CAS  Google Scholar 

  26. Hosseini, A., & Hosseinzadeh, H. (2018). Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomedicine & Pharmacotherapy, 99411–99421.

    Google Scholar 

  27. Seyedzadeh, M. H., Safari, Z., Zare, A., Navashenaq, J. G., Kardar, G. A., & Khorramizadeh, M. R. (2014). Study of curcumin immunomodulatory effects on reactive astrocyte cell function. International Immunopharmacology, 22(1), 230–235.

    Article  CAS  PubMed  Google Scholar 

  28. Abdollahi, E., Momtazi, A. A., Johnston, T. P., & Sahebkar, A. (2018). Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? Journal of Cellular Physiology, 233(2), 830–848.

    Article  CAS  PubMed  Google Scholar 

  29. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology (pp. 133–164). Springer.

    Chapter  Google Scholar 

  30. García-Niño, W. R., & Pedraza-Chaverrí, J. (2014). Protective effect of curcumin against heavy metals-induced liver damage. Food and Chemical Toxicology, 69182–69201.

    Google Scholar 

  31. Mehrandish, R., Rahimian, A., & Shahriary, A. (2019). Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. Journal of Herbmed Pharmacology, 8(2), 69–77.

    Article  CAS  Google Scholar 

  32. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.

    Article  PubMed  Google Scholar 

  33. Kim, J.-J., Kim, Y.-S., & Kumar, V. (2019). Heavy metal toxicity: An update of chelating therapeutic strategies. Journal of Trace Elements in Medicine and Biology, 54226–54231.

    Google Scholar 

  34. Zhai, Q., Narbad, A., & Chen, W. (2015). Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients, 7(1), 552–571.

    Article  PubMed  Google Scholar 

  35. Amadi, C. N., Offor, S. J., Frazzoli, C., & Orisakwe, O. E. (2019). Natural antidotes and management of metal toxicity. Environmental Science and Pollution Research, 26(18), 18032–18052.

    Article  CAS  PubMed  Google Scholar 

  36. Tsuda, T. (2018). Curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. Food & Function, 9(2), 705–714.

    Article  CAS  Google Scholar 

  37. Daniel, S., Limson, J. L., Dairam, A., Watkins, G. M., & Daya, S. (2004). Through metal binding, curcumin protects against lead-and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. Journal of Inorganic Biochemistry, 98(2), 266–275.

    Article  CAS  PubMed  Google Scholar 

  38. Xu, X.-Y., Meng, X., Li, S., Gan, R.-Y., Li, Y., & Li, H.-B. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 10(10), 1553.

    Article  PubMed Central  Google Scholar 

  39. Motaharinia, J., Panahi, Y., Barreto, G. E., Beiraghdar, F., & Sahebkar, A. (2019). Efficacy of curcumin on prevention of drug-induced nephrotoxicity: A review of animal studies. BioFactors, 45(5), 690–702.

    Article  PubMed  Google Scholar 

  40. Mohajeri, M., Rezaee, M., & Sahebkar, A. (2017). Cadmium-induced toxicity is rescued by curcumin: A review. BioFactors, 43(5), 645–661.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, K. S., Lim, H.-J., Lim, J. S., Son, J. Y., Lee, J., Lee, B. M., et al. (2018). Curcumin ameliorates cadmium-induced nephrotoxicity in Sprague-Dawley rats. Food and Chemical Toxicology, 11434–11440.

    Google Scholar 

  42. Eke, D., Çelik, A., Yilmaz, M. B., Aras, N., Kocatürk Sel, S., & Alptekin, D. (2017). Apoptotic gene expression profiles and DNA damage levels in rat liver treated with perfluorooctane sulfonate and protective role of curcumin. International Journal of Biological Macromolecules, 104(Pt A), 515–520.

    Article  CAS  PubMed  Google Scholar 

  43. Deevika, B., Asha, S., Taju, G., & Nalini, T. (2012). Cadmium acetate induced nephrotoxicity and protective role of curcumin in rats. Asian Journal of Pharmaceutical and Clinical Research [Internet], 5(3 Suppl), 186–188.

    CAS  Google Scholar 

  44. Tarasub, N., Tarasub, C., & Ayutthaya, W. D. N. (2011). Protective role of curcumin on cadmium-induced nephrotoxicity in rats. Journal of Environmental Chemistry and Ecotoxicology, 3(2), 17–24.

    CAS  Google Scholar 

  45. Rennolds, J., Malireddy, S., Hassan, F., Tridandapani, S., Parinandi, N., Boyaka, P. N., et al. (2012). Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochemical and Biophysical Research Communications, 417(1), 256–261.

    Article  CAS  PubMed  Google Scholar 

  46. SHARMA, S., & KUMARI, A. (2018). Protective effect of Curcuma Longa administration on lung of mice exposed to cadmium. Asian Journal of Pharmaceutical and Clinical Research, 11(10), 536–539.

    Article  CAS  Google Scholar 

  47. El-Mansy, A., Mazroa, S., Hamed, W., Yaseen, A., & El-Mohandes, E. (2016). Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity. Biotechnic & Histochemistry, 91(3), 170–181.

    Article  CAS  Google Scholar 

  48. Tarasub, N., Junseecha, T., Tarasub, C., & Ayutthaya, W. D. N. (2012). Protective effects of curcumin, vitamin C, or their combination on cadmium-induced hepatotoxicity. Journal of Basic and Clinical Pharmacy, 3(2), 273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deevika, B., Asha, S., Taju, G., & Nalini, T. (2012). A study of cadmium acetate induced toxicity and heptoprotective activities of curcumin in albino rats. International Journal of Research in Pharmaceutical Sciences, 3(3), 436–440.

    Google Scholar 

  50. Abu-Taweel, G. M. (2016). Effects of curcumin on the social behavior, blood composition, reproductive hormones in plasma and brain acetylcholinesterase in cadmium intoxicated mice. Saudi Journal of Biological Sciences, 23(2), 219–228.

    Article  CAS  PubMed  Google Scholar 

  51. Abu-Taweel, G. M., Ajarem, J. S., & Ahmad, M. (2013). Protective effect of curcumin on anxiety, learning behavior, neuromuscular activities, brain neurotransmitters and oxidative stress enzymes in cadmium intoxicated mice. Journal of Behavioral and Brain Science, 3(01), 74.

    Article  CAS  Google Scholar 

  52. Oguzturk, H., Ciftci, O., Aydin, M., Timurkaan, N., Beytur, A., & Yilmaz, F. (2012). Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats. Andrologia, 44(4), 243–249.

    Article  CAS  PubMed  Google Scholar 

  53. Gao, S., Duan, X., Wang, X., Dong, D., Liu, D., Li, X., et al. (2013). Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food and Chemical Toxicology, 59739–59747.

    Google Scholar 

  54. Suhl, J., Leonard, S., Weyer, P., Rhoads, A., Siega-Riz, A. M., Renee Anthony, T., et al. (2018). Maternal arsenic exposure and nonsyndromic orofacial clefts. Birth Defects Research, 110(19), 1455–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sinha, D., Mukherjee, S., Roy, S., Bhattacharya, R., & Roy, M. (2009). Modulation of arsenic induced genotoxicity by curcumin in human lymphocytes. Journal of Environmental Chemistry and Ecotoxicology, 11–11.

    Google Scholar 

  56. Flora, S., Bhadauria, S., Kannan, G., & Singh, N. (2007). Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: A review. Journal of Environmental Biology, 28(2), 333.

    CAS  PubMed  Google Scholar 

  57. Liu, J., & Waalkes, M. P. (2008). Liver is a target of arsenic carcinogenesis. Toxicological Sciences, 105(1), 24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yousef, M. I., El-Demerdash, F. M., & Radwan, F. M. (2008). Sodium arsenite induced biochemical perturbations in rats: Ameliorating effect of curcumin. Food and Chemical Toxicology, 46(11), 3506–3511.

    Article  CAS  PubMed  Google Scholar 

  59. Muthumani, M., & Miltonprabu, S. (2015). Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats. Chemico-Biological Interactions, 23595–23105.

    Google Scholar 

  60. Biswas, J., Sinha, D., Mukherjee, S., Roy, S., Siddiqi, M., & Roy, M. (2010). Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Human & Experimental Toxicology, 29(6), 513–524.

    Article  CAS  Google Scholar 

  61. Sankar, P., Telang, A. G., Kalaivanan, R., Karunakaran, V., Suresh, S., & Kesavan, M. (2016). Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats. Toxicology and Industrial Health, 32(3), 410–421.

    Article  CAS  PubMed  Google Scholar 

  62. Yadav, R. S., Chandravanshi, L. P., Shukla, R. K., Sankhwar, M. L., Ansari, R. W., Shukla, P. K., et al. (2011). Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology, 32(6), 760–768.

    Article  CAS  PubMed  Google Scholar 

  63. Srivastava, P., Yadav, R. S., Chandravanshi, L. P., Shukla, R. K., Dhuriya, Y. K., Chauhan, L. K., et al. (2014). Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicology and Applied Pharmacology, 279(3), 428–440.

    Article  CAS  PubMed  Google Scholar 

  64. Jahan-Abad, A. J., Morteza-Zadeh, P., Negah, S. S., & Gorji, A. (2017). Curcumin attenuates harmful effects of arsenic on neural stem/progenitor cells. Avicenna Journal of Phytomedicine, 7(4), 376.

    CAS  Google Scholar 

  65. García-Niño, W. R., Tapia, E., Zazueta, C., Zatarain-Barrón, Z. L., Hernández-Pando, R., Vega-García, C. C., et al. (2013). Curcumin pretreatment prevents potassium dichromate-induced hepatotoxicity, oxidative stress, decreased respiratory complex I activity, and membrane permeability transition pore opening. Evidence-based Complementary and Alternative Medicine, 2013.

    Google Scholar 

  66. Devi, K. R., Mosheraju, M., & Reddy, K. D. (2012). Curcumin prevents chromium induced sperm characteristics in mice. IOSR Journal of Pharmacy, 2, 312–316.

    Google Scholar 

  67. Molina-Jijón, E., Tapia, E., Zazueta, C., El Hafidi, M., Zatarain-Barrón, Z. L., Hernández-Pando, R., et al. (2011). Curcumin prevents Cr (VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radical Biology and Medicine, 51(8), 1543–1557.

    Article  PubMed  Google Scholar 

  68. Shukla, P. K., Khanna, V. K., Khan, M. Y., & Srimal, R. C. (2003). Protective effect of curcumin against lead neurotoxicity in rat. Human & Experimental Toxicology, 22(12), 653–658.

    Article  CAS  Google Scholar 

  69. Dairam, A., Limson, J. L., Watkins, G. M., Antunes, E., & Daya, S. (2007). Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. Journal of Agricultural and Food Chemistry, 55(3), 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  70. Mahjoub, S., & Moghaddam, A. H. (2011). The role of exercising and curcumin on the treatment of lead-induced cardiotoxicity in rats. Iranian Journal of Health and Physical Activity, 2(1), 1–5.

    Google Scholar 

  71. Baxla, S., Gora, R., Kerketta, P., Kumar, N., Roy, B., & Patra, P. (2013). Hepatoprotective effect of Curcuma longa against lead induced toxicity in Wistar rats. Veterinary World, 6(9), 664–667.

    Article  Google Scholar 

  72. Flora, G., Gupta, D., & Tiwari, A. (2013). Preventive efficacy of bulk and nanocurcumin against lead-induced oxidative stress in mice. Biological Trace Element Research, 152(1), 31–40.

    Article  CAS  PubMed  Google Scholar 

  73. Memar Moghadam, M. (2011). Effects of lead acetate, endurance training and curcumin supplementation on heat shock protein levels in liver tissue. Iranian Journal of Endocrinology and Metabolism, 13(1), 74–81.

    Google Scholar 

  74. Soliman, M. M., Baiomy, A. A., & Yassin, M. H. (2015). Molecular and histopathological study on the ameliorative effects of curcumin against lead acetate-induced hepatotoxicity and nephrototoxicity in Wistar rats. Biological Trace Element Research, 167(1), 91–102.

    Article  CAS  PubMed  Google Scholar 

  75. Ghoniem, M. H., El-Sharkawy, N. I., Hussein, M. M., & Moustafa, G. G. (2012). Efficacy of curcumin on lead induced nephrotoxicity in female albino rats. Journal of American Science, 8(6), 502–510.

    Google Scholar 

  76. Abu-Taweel, G. M. (2019). Neurobehavioral protective properties of curcumin against the mercury chloride treated mice offspring. Saudi Journal of Biological Sciences, 26(4), 736–743.

    Article  CAS  PubMed  Google Scholar 

  77. Agarwal, R., Goel, S. K., & Behari, J. R. (2010). Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. Journal of Applied Toxicology, 30(5), 457–468.

    CAS  PubMed  Google Scholar 

  78. Agarwal, A., & Saxena, P. N. (2018). Curcumin administration attenuates accumulation of mercuric chloride in vital organs of experimental rats and leads to prevent hepatic and renal toxicity. International Journal of Pharmaceutical Sciences and Research, 9(3), 1176–1182.

    CAS  Google Scholar 

  79. Liu, W., Xu, Z., Li, H., Guo, M., Yang, T., Feng, S., et al. (2017). Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Human & Experimental Toxicology, 36(9), 949–966.

    Article  CAS  Google Scholar 

  80. Joshi, D., Mittal, D. K., Kumar, R., Kumar Srivastav, A., & Srivastav, S. K. (2013). Protective role of Curcuma longa extract and curcumin on mercuric chloride-induced nephrotoxicity in rats: Evidence by histological architecture. Toxicological & Environmental Chemistry, 95(9), 1581–1588.

    Article  CAS  Google Scholar 

  81. Faille, C., Cunault, C., Dubois, T., & Benezech, T. (2018). Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innovative Food Science & Emerging Technologies, 4665–4673.

    Google Scholar 

  82. Capuano, E., & Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Science and Technology, 44(4), 793–810.

    Article  CAS  Google Scholar 

  83. Namir, M., Rabie, M. A., Rabie, N. A., & Ramadan, M. F. (2018). Optimizing the addition of functional plant extracts and baking conditions to develop acrylamide-free pita bread. Journal of Food Protection, 81(10), 1696–1706.

    Article  CAS  PubMed  Google Scholar 

  84. Morsy, G. M., El Sayed, H. H., Hanna, E., & Abdel Rahman, M. K. (2008). Turmeric may protect cells from oxidative stress by acrylamide in-vivo. The Egyptian Journal of Forensic Sciences and Applied Toxicology, 4123–4129.

    Google Scholar 

  85. Yildizbayrak, N., & Erkan, M. (2019). Therapeutic effect of curcumin on acrylamide-induced apoptosis mediated by MAPK signaling pathway in Leydig cells. Journal of Biochemical and Molecular Toxicology, 33(7), e22326.

    Article  PubMed  Google Scholar 

  86. Yan, D., Yao, J., Liu, Y., Zhang, X., Wang, Y., Chen, X., et al. (2018). Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin. Brain, Behavior, and Immunity, 7166–7180.

    Google Scholar 

  87. Shan, X., Li, Y., Meng, X., Wang, P., Jiang, P., & Feng, Q. (2014). Curcumin and (−)-epigallocatechin-3-gallate attenuate acrylamide-induced proliferation in HepG2 cells. Food and Chemical Toxicology, 66, 194–202.

    Article  CAS  PubMed  Google Scholar 

  88. Hackler, L., Jr., Ózsvári, B., Gyuris, M., Sipos, P., Fábián, G., Molnár, E., et al. (2016). The curcumin analog C-150, influencing NF-κB, UPR and Akt/notch pathways has potent anticancer activity in vitro and in vivo. PLoS One, 11(3), e0149832.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xu, Y., Wang, P., Xu, C., Shan, X., & Feng, Q. (2019). Acrylamide induces HepG2 cell proliferation through upregulation of miR-21 expression. Journal of Biomedical Research, 33(3), 181–191.

    PubMed  Google Scholar 

  90. Cao, J., Jiang, L., Geng, C., & Yao, X. (2009). Preventive effects of curcumin on acrylamide-induced DNA damage in HepG2 cells. Wei Sheng Yan Jiu, 38(4), 392–395.

    CAS  PubMed  Google Scholar 

  91. Kurien, B. T. (2009). Comment on curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. Journal of Agricultural and Food Chemistry, 57(12), 5644–5646.

    Article  CAS  PubMed  Google Scholar 

  92. Cao, J., Liu, Y., Jia, L., Jiang, L. P., Geng, C. Y., Yao, X. F., et al. (2008). Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. Journal of Agricultural and Food Chemistry, 56(24), 12059–12063.

    Article  CAS  PubMed  Google Scholar 

  93. Senthilkumar, S., Raveendran, R., Madhusoodanan, S., Sundar, M., Shankar, S. S., Sharma, S., et al. (2020). Developmental and behavioural toxicity induced by acrylamide exposure and amelioration using phytochemicals in Drosophila melanogaster. Journal of Hazardous Materials, 394, 122–533.

    Article  Google Scholar 

  94. Brotons, J. A., Olea-Serrano, M. F., Villalobos, M., Pedraza, V., & Olea, N. (1995). Xenoestrogens released from lacquer coatings in food cans. Environmental Health Perspectives, 103(6), 608–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guenther, K., Heinke, V., Thiele, B., Kleist, E., Prast, H., & Raecker, T. (2002). Endocrine disrupting nonylphenols are ubiquitous in food. Environmental Science & Technology, 36(8), 1676–1680.

    Article  CAS  Google Scholar 

  96. Vivacqua, A., Recchia, A. G., Fasanella, G., Gabriele, S., Carpino, A., Rago, V., et al. (2003). The food contaminants bisphenol A and 4-nonylphenol act as agonists for estrogen receptor α in MCF7 breast cancer cells. Endocrine, 22(3), 275–284.

    Article  CAS  PubMed  Google Scholar 

  97. Geens, T., Aerts, D., Berthot, C., Bourguignon, J.-P., Goeyens, L., Lecomte, P., et al. (2012). A review of dietary and non-dietary exposure to bisphenol-a. Food and Chemical Toxicology, 50(10), 3725–3740.

    Article  CAS  PubMed  Google Scholar 

  98. Kalender, S., Apaydin, F. G., & Kalender, Y. (2019). Testicular toxicity of orally administrated bisphenol A in rats and protective role of taurine and curcumin. Pakistan Journal of Pharmaceutical Sciences, 32(3), 1043–1047.

    CAS  PubMed  Google Scholar 

  99. Akintunde, J. K., Farouk, A. A., & Mogbojuri, O. (2019). Metabolic treatment of syndrome linked with Parkinson’s disease and hypothalamus pituitary gonadal hormones by turmeric curcumin in Bisphenol-A induced neuro-testicular dysfunction of wistar rat. Biochemistry and Biophysics Reports, 1797–1107.

    Google Scholar 

  100. Uzunhisarcikli, M., & Aslanturk, A. (2019). Hepatoprotective effects of curcumin and taurine against bisphenol A-induced liver injury in rats. Environmental Science and Pollution Research International, 26(36), 37242–37253.

    Article  CAS  PubMed  Google Scholar 

  101. Tiwari, S. K., Agarwal, S., Tripathi, A., & Chaturvedi, R. K. (2016). Bisphenol-a mediated inhibition of hippocampal neurogenesis attenuated by curcumin via canonical Wnt pathway. Molecular Neurobiology, 53(5), 3010–3029.

    Article  CAS  PubMed  Google Scholar 

  102. Bull, S., Burnett, K., Vassaux, K., Ashdown, L., Brown, T., & Rushton, L. (2014). Extensive literature search and provision of summaries of studies related to the oral toxicity of perfluoroalkylated substances (PFASs), their precursors and potential replacements in experimental animals and humans. Area 1: Data on toxicokinetics (absorption, distribution, metabolism, excretion) in in vitro studies, experimental animals and humans. Area 2: Data on toxicity in experimental animals. Area 3: Data on observations in humans. EFSA Supporting Publications, 11(4), 572E.

    Article  Google Scholar 

  103. StockholmConvention Recommendations on the elimination of brominated diphenyl ethers from the waste stream and on risk reduction for perfluorooctane sulfonic acid (PFOS) and its salts and perfluorooctane sulfonyl fluoride (PFOSF). In: Fifth meeting of the conference of the parties 25–29 April, 2011, Geneva/Switzerland.

    Google Scholar 

  104. D’Hollander, W., de Voogt, P., De Coen, W., & Bervoets, L. (2010). Perfluorinated substances in human food and other sources of human exposure. In Reviews of environmental contamination and toxicology (Vol. 208, pp. 179–215). Springer.

    Google Scholar 

  105. Suja, F., Pramanik, B. K., & Zain, S. M. (2009). Contamination, bioaccumulation and toxic effects of perfluorinated chemicals (PFCs) in the water environment: A review paper. Water Science and Technology, 60(6), 1533–1544.

    Article  CAS  PubMed  Google Scholar 

  106. Andersen ME, Butenhoff JL, Chang SC, Farrar DG, Kennedy GL, Jr., Lau C et al. (2008) Perfluoroalkyl acids and related chemistries--toxicokinetics and modes of action. Toxicological Sciences 102(1):3–14.

    Google Scholar 

  107. Çelik, A., Eke, D., Ekinci, S. Y., & Yıldırım, S. (2013). The protective role of curcumin on perfluorooctane sulfonate-induced genotoxicity: Single cell gel electrophoresis and micronucleus test. Food and Chemical Toxicology, 53249–53255.

    Google Scholar 

  108. Eke, D., & Çelik, A. (2016). Curcumin prevents perfluorooctane sulfonate-induced genotoxicity and oxidative DNA damage in rat peripheral blood. Drug and Chemical Toxicology, 39(1), 97–103.

    Article  CAS  PubMed  Google Scholar 

  109. Espey MG, Miranda KM, Thomas DD, Xavier S, Citrin D, Vitek MP et al. (2002) A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. Annals of the New York Academy of Sciences 962(1):195–206.

    Google Scholar 

  110. Swann, P., & Magee, P. (1968). Nitrosamine-induced carcinogenesis. The alkylation of nucleic acids of the rat by N-methyl-N-nitrosourea, dimethylnitrosamine, dimethyl sulphate and methyl methanesulphonate. Biochemical Journal, 110(1), 39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rector, R. S., Thyfault, J. P., Wei, Y., & Ibdah, J. A. (2008). Non-alcoholic fatty liver disease and the metabolic syndrome: An update. World journal of gastroenterology: WJG, 14(2), 185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tong, M., Neusner, A., Longato, L., Lawton, M., Wands, J. R., & de la Monte, S. M. (2009). Nitrosamine exposure causes insulin resistance diseases: Relevance to type 2 diabetes mellitus, non-alcoholic steatohepatitis, and Alzheimer's disease. Journal of Alzheimer's Disease, 17(4), 827–844.

    CAS  PubMed  Google Scholar 

  113. Song, P., Wu, L., & Guan, W. (2015). Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients, 7(12), 9872–9895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sun, H., Yu, L., Wei, H., & Liu, G. (2012). A novel antihepatitis drug, bicyclol, prevents liver carcinogenesis in diethylnitrosamine-initiated and phenobarbital-promoted mice tumor model. BioMed Research International, 2012.

    Google Scholar 

  115. Lee, M. F., Tsai, M. L., Sun, P. P., Chien, L. L., Cheng, A. C., Ma, N. J., et al. (2013). Phyto-power dietary supplement potently inhibits dimethylnitrosamine-induced liver fibrosis in rats. Food & Function, 4(3), 470–475.

    Article  CAS  Google Scholar 

  116. Chuang, S. E., Kuo, M. L., Hsu, C. H., Chen, C. R., Lin, J. K., Lai, G. M., et al. (2000). Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis, 21(2), 331–335.

    Article  CAS  PubMed  Google Scholar 

  117. Ahmed, H. H., Shousha, W. G., Shalby, A. B., El-Mezayen, H. A., Ismaiel, N. N., & Mahmoud, N. S. (2015). Implications of sex hormone receptor gene expression in the predominance of hepatocellular carcinoma in males: Role of natural products. Asian Pacific Journal of Cancer Prevention, 16(12), 4949–4954.

    Article  PubMed  Google Scholar 

  118. Chuang, S. E., Cheng, A. L., Lin, J. K., & Kuo, M. L. (2000). Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food and Chemical Toxicology, 38(11), 991–995.

    Article  CAS  PubMed  Google Scholar 

  119. Nasr, M., Selima, E., Hamed, O., & Kazem, A. (2014). Targeting different angiogenic pathways with combination of curcumin, leflunomide and perindopril inhibits diethylnitrosamine-induced hepatocellular carcinoma in mice. European Journal of Pharmacology, 723, 267–275.

    Article  CAS  PubMed  Google Scholar 

  120. Zhao, X., Chen, Q., Li, Y., Tang, H., Liu, W., & Yang, X. (2015). Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. European Journal of Pharmaceutics and Biopharmaceutics, 93, 27–36.

    Article  CAS  PubMed  Google Scholar 

  121. Abouzied, M. M., Eltahir, H. M., Abdel Aziz, M. A., Ahmed, N. S., Abd El-Ghany, A. A., Abd El-Aziz, E. A., et al. (2015). Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model. Tumour Biology, 36(3), 1763–1771.

    Article  CAS  PubMed  Google Scholar 

  122. Fujise, Y., Okano, J., Nagahara, T., Abe, R., Imamoto, R., & Murawaki, Y. (2012). Preventive effect of caffeine and curcumin on hepato-carcinogenesis in diethylnitrosamine-induced rats. International Journal of Oncology, 40(6), 1779–1788.

    CAS  PubMed  Google Scholar 

  123. Patial, V., S, M., Sharma, S., Pratap, K., Singh, D., & Padwad, Y. S. (2015). Synergistic effect of curcumin and piperine in suppression of DENA-induced hepatocellular carcinoma in rats. Environmental Toxicology and Pharmacology, 40(2), 445–452.

    Article  CAS  PubMed  Google Scholar 

  124. Kadasa, N. M., Abdallah, H., Afifi, M., & Gowayed, S. (2015). Hepatoprotective effects of curcumin against diethyl nitrosamine induced hepatotoxicity in albino rats. Asian Pacific Journal of Cancer Prevention, 16(1), 103–108.

    Article  PubMed  Google Scholar 

  125. Khan, H., Ullah, H., & Nabavi, S. M. (2019). Mechanistic insights of hepatoprotective effects of curcumin: Therapeutic updates and future prospects. Food and Chemical Toxicology, 124, 182–191.

    Article  CAS  PubMed  Google Scholar 

  126. Farombi, E. O., Shrotriya, S., Na, H.-K., Kim, S.-H., & Surh, Y.-J. (2008). Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology, 46(4), 1279–1287.

    Article  CAS  PubMed  Google Scholar 

  127. Ghosh, D., Choudhury, S. T., Ghosh, S., Mandal, A. K., Sarkar, S., Ghosh, A., et al. (2012). Nanocapsulated curcumin: Oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chemico-Biological Interactions, 195(3), 206–214.

    Article  CAS  PubMed  Google Scholar 

  128. Sreepriya, M., & Bali, G. (2005). Chemopreventive effects of embelin and curcumin against N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Fitoterapia, 76(6), 549–555.

    Article  CAS  PubMed  Google Scholar 

  129. Tork, O. M., Khaleel, E. F., & Abdelmaqsoud, O. M. (2015). Altered cell to cell communication, autophagy and mitochondrial dysfunction in a model of hepatocellular carcinoma: Potential protective effects of curcumin and stem cell therapy. Asian Pacific Journal of Cancer Prevention, 16(18), 8271–8279.

    Article  PubMed  Google Scholar 

  130. Sreepriya, M., & Bali, G. (2006). Effects of administration of Embelin and curcumin on lipid peroxidation, hepatic glutathione antioxidant defense and hematopoietic system during N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Molecular and Cellular Biochemistry, 284(1–2), 49–55.

    Article  CAS  PubMed  Google Scholar 

  131. Huang, C. Z., Huang, W. Z., Zhang, G., & Tang, D. L. (2013). In vivo study on the effects of curcumin on the expression profiles of anti-tumour genes (VEGF, CyclinD1 and CDK4) in liver of rats injected with DEN. Molecular Biology Reports, 40(10), 5825–5831.

    Article  CAS  PubMed  Google Scholar 

  132. Huang, A. C., Lin, S. Y., Su, C. C., Lin, S. S., Ho, C. C., Hsia, T. C., et al. (2008). Effects of curcumin on N-bis(2-hydroxypropyl) nitrosamine (DHPN)-induced lung and liver tumorigenesis in BALB/c mice in vivo. Vivo, 22(6), 781–785.

    CAS  Google Scholar 

  133. Bryan, N. S., Alexander, D. D., Coughlin, J. R., Milkowski, A. L., & Boffetta, P. (2012). Ingested nitrate and nitrite and stomach cancer risk: An updated review. Food and Chemical Toxicology, 50(10), 3646–3665.

    Article  CAS  PubMed  Google Scholar 

  134. Waly, M. I., Al-Bulushi, I. M., Al-Hinai, S., Guizani, N., Al-Malki, R. N., & Rahman, M. S. (2018). The protective effect of curcumin against nitrosamine-induced gastric oxidative stress in rats. Preventive Nutrition and Food Science, 23(4), 288–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ushida, J., Sugie, S., Kawabata, K., Pham, Q. V., Tanaka, T., Fujii, K., et al. (2000). Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Japanese Journal of Cancer Research, 91(9), 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Azuine, M. A., & Bhide, S. V. (1994). Adjuvant chemoprevention of experimental cancer: Catechin and dietary turmeric in forestomach and oral cancer models. Journal of Ethnopharmacology, 44(3), 211–217.

    Article  CAS  PubMed  Google Scholar 

  137. Cancer IAfRo. (2012). A review of human carcinogens: Personal habits and indoor combustions. World Health Organization.

    Google Scholar 

  138. Collins, J., Brown, J., Alexeeff, G., & Salmon, A. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory Toxicology and Pharmacology, 28(1), 45–54.

    Article  CAS  PubMed  Google Scholar 

  139. Chien, Y.-C., & Yeh, C.-T. (2012). Excretion kinetics of urinary 3-hydroxybenzo [a] pyrene following dietary exposure to benzo [a] pyrene in humans. Archives of Toxicology, 86(1), 45–53.

    Article  CAS  PubMed  Google Scholar 

  140. Alomirah, H., Al-Zenki, S., Al-Hooti, S., Zaghloul, S., Sawaya, W., Ahmed, N., et al. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control, 22(12), 2028–2035.

    Article  CAS  Google Scholar 

  141. Athar, M., Khan, W. A., & Mukhtar, H. (1989). Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Research, 49(21), 5784–5788.

    CAS  PubMed  Google Scholar 

  142. Vauhkonen, M., Kuusi, T., & Kinnunen, P. K. (1980). Serum and tissue distribution of benzo [a] pyrene from intravenously injected chylomicrons in rat in vivo. Cancer Letters, 11(2), 113–119.

    Article  CAS  PubMed  Google Scholar 

  143. Withey, J., Shedden, J., Law, F., & Abedini, S. (1993). Distribution of benzo [a] pyrene in pregnant rats following inhalation exposure and a comparison with similar data obtained with pyrene. Journal of Applied Toxicology, 13(3), 193–202.

    Article  CAS  PubMed  Google Scholar 

  144. Kim, K. S., Kim, N. Y., Son, J. Y., Park, J. H., Lee, S. H., Kim, H. R., et al. (2019). Curcumin ameliorates benzo [a] pyrene-induced DNA damages in stomach tissues of Sprague-Dawley rats. International Journal of Molecular Sciences, 20(22), 5533.

    Article  CAS  PubMed Central  Google Scholar 

  145. Gao, M., Li, Y., Sun, Y., Long, J., Kong, Y., Yang, S., et al. (2011). A common carcinogen benzo [a] pyrene causes p53 overexpression in mouse cervix via DNA damage. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 724(1–2), 69–75.

    Article  CAS  Google Scholar 

  146. Garg, R., Gupta, S., & Maru, G. B. (2008). Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: Mechanism of its anti-initiating action. Carcinogenesis, 29(5), 1022–1032.

    Article  CAS  PubMed  Google Scholar 

  147. Thapliyal, R., Deshpande, S. S., & Maru, G. B. (2001). Effects of turmeric on the activities of benzo(a)pyrene-induced cytochrome P-450 isozymes. Journal of Environmental Pathology, Toxicology and Oncology, 20(1), 59–63.

    Article  CAS  PubMed  Google Scholar 

  148. Azuine, M. A., Kayal, J. J., & Bhide, S. V. (1992). Protective role of aqueous turmeric extract against mutagenicity of direct-acting carcinogens as well as benzo [alpha] pyrene-induced genotoxicity and carcinogenicity. Journal of Cancer Research and Clinical Oncology, 118(6), 447–452.

    Article  CAS  PubMed  Google Scholar 

  149. Mukundan, M. A., Chacko, M. C., Annapurna, V. V., & Krishnaswamy, K. (1993). Effect of turmeric and curcumin on BP-DNA adducts. Carcinogenesis, 14(3), 493–496.

    Article  CAS  PubMed  Google Scholar 

  150. Huang, M. T., Newmark, H. L., & Frenkel, K. (1997). Inhibitory effects of curcumin on tumorigenesis in mice. Journal of Cellular Biochemistry. Supplement, 2726–2734.

    Google Scholar 

  151. Huang, M. T., Lou, Y. R., Ma, W., Newmark, H. L., Reuhl, K. R., & Conney, A. H. (1994). Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Research, 54(22), 5841–5847.

    CAS  PubMed  Google Scholar 

  152. Deshpande, S. S., & Maru, G. B. (1995). Effects of curcumin on the formation of benzo[a]pyrene derived DNA adducts in vitro. Cancer Letters, 96(1), 71–80.

    Article  CAS  PubMed  Google Scholar 

  153. Ibrahim, M. A., Elbehairy, A. M., Ghoneim, M. A., & Amer, H. A. (2007). Protective effect of curcumin and chlorophyllin against DNA mutation induced by cyclophosphamide or benzo[a]pyrene. Z Naturforsch C. Journal of Biosciences, 62(3–4), 215–222.

    CAS  PubMed  Google Scholar 

  154. Singh, S. V., Hu, X., Srivastava, S. K., Singh, M., Xia, H., Orchard, J. L., et al. (1998). Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis, 19(8), 1357–1360.

    Article  CAS  PubMed  Google Scholar 

  155. Deshpande, S. S., Ingle, A. D., & Maru, G. B. (1997). Inhibitory effects of curcumin-free aqueous turmeric extract on benzo[a]pyrene-induced forestomach papillomas in mice. Cancer Letters, 118(1), 79–85.

    Article  CAS  PubMed  Google Scholar 

  156. Banerjee, B., Chakraborty, S., Ghosh, D., Raha, S., Sen, P. C., & Jana, K. (2016). Benzo(a)pyrene induced p53 mediated male germ cell apoptosis: Synergistic protective effects of curcumin and resveratrol. Frontiers in Pharmacology, 7245.

    Google Scholar 

  157. Nair, P., Malhotra, A., & Dhawan, D. K. (2015). Curcumin and quercetin trigger apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Molecular and Cellular Biochemistry, 400(1–2), 51–56.

    Article  CAS  PubMed  Google Scholar 

  158. Huang, M. T., Wang, Z. Y., Georgiadis, C. A., Laskin, J. D., & Conney, A. H. (1992). Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7, 12-dimethylbenz[a]anthracene. Carcinogenesis, 13(11), 2183–2186.

    Article  CAS  PubMed  Google Scholar 

  159. Almatroodi, S. A., Alrumaihi, F., Alsahli, M. A., Alhommrani, M. F., Khan, A., & Rahmani, A. H. (2020). Curcumin, an active constituent of turmeric spice: Implication in the prevention of lung injury induced by benzo(a) pyrene (BaP) in rats. Molecules, 25(3).

    Google Scholar 

  160. Puliyappadamba, V. T., Thulasidasan, A. K., Vijayakurup, V., Antony, J., Bava, S. V., Anwar, S., et al. (2015). Curcumin inhibits B[a]PDE-induced procarcinogenic signals in lung cancer cells, and curbs B[a]P-induced mutagenesis and lung carcinogenesis. BioFactors, 41(6), 431–442.

    Article  CAS  PubMed  Google Scholar 

  161. Zhang, P., & Zhang, X. (2018). Stimulatory effects of curcumin and quercetin on posttranslational modifications of p53 during lung carcinogenesis. Human & Experimental Toxicology, 37(6), 618–625.

    Article  CAS  Google Scholar 

  162. Liu, Y., Wu, Y. M., & Zhang, P. Y. (2015). Protective effects of curcumin and quercetin during benzo(a)pyrene induced lung carcinogenesis in mice. European Review for Medical and Pharmacological Sciences, 19(9), 1736–1743.

    CAS  PubMed  Google Scholar 

  163. Malhotra, A., Nair, P., & Dhawan, D. K. (2012). Curcumin and resveratrol in combination modulates benzo(a)pyrene-induced genotoxicity during lung carcinogenesis. Human & Experimental Toxicology, 31(12), 1199–1206.

    Article  CAS  Google Scholar 

  164. Zhu, W., Cromie, M. M., Cai, Q., Lv, T., Singh, K., & Gao, W. (2014). Curcumin and vitamin E protect against adverse effects of benzo[a]pyrene in lung epithelial cells. PLoS One, 9(3), e92992.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Sehgal, A., Kumar, M., Jain, M., & Dhawan, D. K. (2011). Combined effects of curcumin and piperine in ameliorating benzo(a)pyrene induced DNA damage. Food and Chemical Toxicology, 49(11), 3002–3006.

    Article  CAS  PubMed  Google Scholar 

  166. Sehgal, A., Kumar, M., Jain, M., & Dhawan, D. K. (2013). Modulatory effects of curcumin in conjunction with piperine on benzo(a)pyrene-mediated DNA adducts and biotransformation enzymes. Nutrition and Cancer, 65(6), 885–890.

    Article  CAS  PubMed  Google Scholar 

  167. Sehgal, A., Kumar, M., Jain, M., & Dhawan, D. K. (2012). Piperine as an adjuvant increases the efficacy of curcumin in mitigating benzo(a)pyrene toxicity. Human & Experimental Toxicology, 31(5), 473–482.

    Article  CAS  Google Scholar 

  168. Liu, D., He, B., Lin, L., Malhotra, A., & Yuan, N. (2019). Potential of curcumin and resveratrol as biochemical and biophysical modulators during lung cancer in rats. Drug and Chemical Toxicology, 42(3), 328–334.

    Article  CAS  PubMed  Google Scholar 

  169. Liu, Y., Wu, Y. M., Yu, Y., Cao, C. S., Zhang, J. H., Li, K., et al. (2015). Curcumin and resveratrol in combination modulate drug-metabolizing enzymes as well as antioxidant indices during lung carcinogenesis in mice. Human & Experimental Toxicology, 34(6), 620–627.

    Article  Google Scholar 

  170. Malhotra, A., Nair, P., & Dhawan, D. K. (2010). Modulatory effects of curcumin and resveratrol on lung carcinogenesis in mice. Phytotherapy Research, 24(9), 1271–1277.

    Article  CAS  PubMed  Google Scholar 

  171. Shirani, K., Zanjani, B. R., Mahmoudi, M., Jafarian, A. H., Hassani, F. V., Giesy, J. P., et al. (2018). Immunotoxicity of aflatoxin M1: As a potent suppressor of innate and acquired immune systems in a subacute study. Journal of the Science of Food and Agriculture, 98(15), 5884–5892.

    Article  CAS  PubMed  Google Scholar 

  172. Liu, Z., Gao, J., & Yu, J. (2006). Aflatoxins in stored maize and rice grains in Liaoning Province, China. Journal of Stored Products Research, 42(4), 468–479.

    Article  CAS  Google Scholar 

  173. Shirani, K., Riahi Zanjani, B., Mehri, S., Razavi-Azarkhiavi, K., Badiee, A., Hayes, A. W., et al. (2019). miR-155 influences cell-mediated immunity in Balb/c mice treated with aflatoxin M1. Drug and Chemical Toxicology, 1–8.

    Google Scholar 

  174. Soni, K., Rajan, A., & Kuttan, R. (1993). Inhibition of aflatoxin-induced liver damage in ducklings by food additives. Mycotoxin Research, 9(1), 22–26.

    Article  CAS  PubMed  Google Scholar 

  175. Yarru, L., Settivari, R., Gowda, N., Antoniou, E., Ledoux, D., & Rottinghaus, G. (2009). Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poultry Science, 88(12), 2620–2627.

    Article  CAS  PubMed  Google Scholar 

  176. Raja, L., Singh, C. K., Mondal, M., Nety, S., & Koley, K. (2017). Ameliorative effect of Curcuma longa in Aflatoxicosis induced hematological and histopathological changes in broiler birds. International Journal of Current Microbiology and Applied Sciences, 6(10), 288–301.

    Article  Google Scholar 

  177. Gogoi, R., Sapcota, D., & Gohain, A. (2010). Efficacy of dietary Curcuma longa in aflatoxicosis in broilers. Indian Veterinary Journal, 87(7), 681–683.

    Google Scholar 

  178. Soliman, G., Hashem, A., & Arafa, M. (2012). Protective effect of Curcuma longa or Nigella sativa on aflatoxin B1-induced hepato-toxicity in rats in relation to food safety on public health. The Medical Journal of Cairo University, 80(2).

    Google Scholar 

  179. Gholami-Ahangaran, M., Rangsaz, N., & Azizi, S. (2016). Evaluation of turmeric (Curcuma longa) effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis. Pharmaceutical Biology, 54(5), 780–787.

    Article  CAS  PubMed  Google Scholar 

  180. Dos Anjos, F., Ledoux, D., Rottinghaus, G., & Chimonyo, M. (2015). Efficacy of adsorbents (bentonite and diatomaceous earth) and turmeric (Curcuma longa) in alleviating the toxic effects of aflatoxin in chicks. British Poultry Science, 56(4), 459–469.

    Article  CAS  PubMed  Google Scholar 

  181. Rangsaz, N., & Ahangaran, M. G. (2011). Evaluation of turmeric extract on performance indices impressed by induced aflatoxicosis in broiler chickens. Toxicology and Industrial Health, 27(10), 956–960.

    Article  CAS  PubMed  Google Scholar 

  182. Mathuria, N., & Verma, R. J. (2007). Aflatoxin induced hemolysis and its amelioration by turmeric extracts and curcumin in vitro. Acta Poloniae Pharmaceutica, 64(2), 165–168.

    CAS  PubMed  Google Scholar 

  183. El-Mahalaway, A. M. (2015). Protective effect of curcumin against experimentally induced aflatoxicosis on the renal cortex of adult male albino rats: A histological and immunohisochemical study. International Journal of Clinical and Experimental Pathology, 8(6), 6019.

    PubMed  PubMed Central  Google Scholar 

  184. Soni, K., Lahiri, M., Chackradeo, P., Bhide, S., & Kuttan, R. (1997). Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity. Cancer Letters, 115(2), 129–133.

    Article  CAS  PubMed  Google Scholar 

  185. Abdel-Wahhab, M. A., Salman, A. S., Ibrahim, M. I., El-Kady, A. A., Abdel-Aziem, S. H., Hassan, N. S., et al. (2016). Curcumin nanoparticles loaded hydrogels protects against aflatoxin B1-induced genotoxicity in rat liver. Food and Chemical Toxicology, 94, 159–171.

    Article  CAS  PubMed  Google Scholar 

  186. Nayak, S., & Sashidhar, R. (2010). Metabolic intervention of aflatoxin B1 toxicity by curcumin. Journal of Ethnopharmacology, 127(3), 641–644.

    Article  CAS  PubMed  Google Scholar 

  187. El-Agamy, D. S. (2010). Comparative effects of curcumin and resveratrol on aflatoxin B 1-induced liver injury in rats. Archives of Toxicology, 84(5), 389–396.

    Article  CAS  PubMed  Google Scholar 

  188. El-Bahr, S. (2015). Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1. Phytotherapy Research, 29(1), 134–140.

    Article  CAS  PubMed  Google Scholar 

  189. Ismaiel, A. A., El-Denshary, E. S., El-Nekeety, A. A., Al-Yamani, A., Gad, S., Hassan, N. S., et al. (2015). Ameliorative effects of curcumin nanoparticles on hepatotoxicity induced by zearalenone mycotoxin. Global. Journal de Pharmacologie, 9(3), 234–245.

    CAS  Google Scholar 

  190. Qin, X., Cao, M., Lai, F., Yang, F., Ge, W., Zhang, X., et al. (2015). Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PLoS One, 10(6).

    Google Scholar 

  191. Taghizadeh, S. F., Rezaee, R., Davarynejad, G., Asili, J., Nemati, S. H., Goumenou, M., et al. (2018). Risk assessment of exposure to aflatoxin B1 and ochratoxin A through consumption of different Pistachio (Pistacia vera L.) cultivars collected from four geographical regions of Iran. Environmental Toxicology and Pharmacology, 61, 61–66.

    Article  CAS  PubMed  Google Scholar 

  192. Clark, H. A., & Snedeker, S. M. (2006). Ochratoxin A: Its cancer risk and potential for exposure. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 9(3), 265–296.

    Article  CAS  PubMed  Google Scholar 

  193. Li, F., & Ji, R. (2003). Ochratoxin A and human health. Wei Sheng Yan Jiu, 32(2), 172–175.

    PubMed  Google Scholar 

  194. Rani, M., Reddy, A., Reddy, G., & Raj, M. (2009). Oxidative stress due to ochratoxin and T-2 toxin either alone or in combination and evaluation of protective role of Curcuma longa, Zingiber officinale, toxichek and activated charcoal. Toxicology International, 16(1), 63.

    Google Scholar 

  195. Kiran, D., Gupta, M., Singh, K., & Kumar, S. (2017). Ameliorative effect of powdered rhizome of Curcuma longa on ochratoxin A induced nephrotoxicity in broilers. Indian Journal of Veterinary Pathology, 41(3), 201–207.

    Article  Google Scholar 

  196. Chavez, C., & Ledoux, D. R. (2008). Efficacy of curcumin in ameliorating the toxic effects of ochratoxin A and aflatoxin in young broilers. In 2008 Undergraduate Research and Creative Achievements Forum (MU), University of Missouri--Columbia. Office of Undergraduate Research.

    Google Scholar 

  197. Qin, X., Cao, M., Lai, F., Yang, F., Ge, W., Zhang, X., et al. (2015). Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro. PLoS One, 10(6), e0127551.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ismaiel, A. A., El-Denshary, E. S., El-Nekeety, A. A., Al-Yamani, A., Gad, S., Hassan, N. S., et al. (2015). Ameliorative effects of curcumin nanoparticles on hepatotoxicity induced by zearalenone mycotoxin. Global Journal of Pharmacology, 9(3), 234–245.

    CAS  Google Scholar 

Download references

Conflict of Interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yousefsani, B.S., Dadmehr, M., Shirani, K., Jamshidi, A., Sathyapalan, T., Sahebkar, A. (2021). Health Benefits of Turmeric and Curcumin Against Food Contaminants. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-73234-9_12

Download citation

Publish with us

Policies and ethics