Skip to main content

Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12658))

Abstract

Glioblastoma (GBM) is arguably the most aggressive, infiltrative, and heterogeneous type of adult brain tumor. Biophysical modeling of GBM growth has contributed to more informed clinical decision-making. However, deploying a biophysical model to a clinical environment is challenging since underlying computations are quite expensive and can take several hours using existing technologies. Here we present a scheme to accelerate the computation. In particular, we present a deep learning (DL)-based logistic regression model to estimate the GBM’s biophysical growth in seconds. This growth is defined by three tumor-specific parameters: 1) a diffusion coefficient in white matter (Dw), which prescribes the rate of infiltration of tumor cells in white matter, 2) a mass-effect parameter (Mp), which defines the average tumor expansion, and 3) the estimated time (T) in number of days that the tumor has been growing. Preoperative structural multi-parametric MRI (mpMRI) scans from \(n=135\) subjects of the TCGA-GBM imaging collection are used to quantitatively evaluate our approach. We consider the mpMRI intensities within the region defined by the abnormal FLAIR signal envelope for training one DL model for each of the tumor-specific growth parameters. We train and validate the DL-based predictions against parameters derived from biophysical inversion models. The average Pearson correlation coefficients between our DL-based estimations and the biophysical parameters are 0.85 for Dw, 0.90 for Mp, and 0.94 for T, respectively. This study unlocks the power of tumor-specific parameters from biophysical tumor growth estimation. It paves the way towards their clinical translation and opens the door for leveraging advanced radiomic descriptors in future studies by means of a significantly faster parameter reconstruction compared to biophysical growth modeling approaches.

C. Davatzikos and S. Bakas—Equally contributing senior author.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.med.upenn.edu/cbica/sbia/glistrboost.html.

  2. 2.

    https://github.com/pyushkevich/greedy.

  3. 3.

    http://www.itksnap.org.

  4. 4.

    https://www.cbica.upenn.edu/captk.

  5. 5.

    https://github.com/CBICA/BrainMaGe/.

References

  1. Ostrom, Q.T., Rubin, J.B., Lathia, J.D., Berens, M.E., Barnholtz-Sloan, J.S.: Females have the survival advantage in glioblastoma. Neuro Oncol. 20(4), 576 (2018)

    Article  Google Scholar 

  2. Herrlinger, U., et al.: Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. The lancet 393(10172), 678–688 (2019)

    Article  Google Scholar 

  3. Hou, L.C., Veeravagu, A., Hsu, A.R., Victor, C.: Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg. Focus 20(4), E3 (2006)

    Article  Google Scholar 

  4. Akbari, H., et al.: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78(4), 572–580 (2016)

    Article  Google Scholar 

  5. Fathi Kazerooni, A., et al.: Cancer imaging phenomics via CaPTk: multi-institutional prediction of progression-free survival and pattern of recurrence in glioblastoma. JCO Clin. Cancer Inf. 4, 234–244 (2020)

    Google Scholar 

  6. Mang, A., Bakas, S., Subramanian, S., Davatzikos, C., Biros, G.: Integrated biophysical modeling and image analysis: application to neuro-oncology. Ann. Rev. Biomed. Eng. 22, 309–341 (2020)

    Article  Google Scholar 

  7. Gutman, D.A., et al.: MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2), 560–569 (2013)

    Article  Google Scholar 

  8. Gevaert, O., et al.: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 273(1), 168–174 (2014)

    Article  Google Scholar 

  9. Jain, R., et al.: Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272(2), 484–493 (2014)

    Article  Google Scholar 

  10. Aerts, H.J.: The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol. 2(12), 1636–1642 (2016)

    Article  Google Scholar 

  11. Bilello, M., et al.: Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma. NeuroImage: Clinical 12, 34–40 (2016)

    Article  Google Scholar 

  12. McNitt-Gray, M., et al.: Standardization in quantitative imaging: a multicenter comparison of radiomic features from different software packages on digital reference objects and patient data sets. Tomography 6(2), 118 (2020)

    Article  Google Scholar 

  13. Bakas, S., et al.: Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities. J. Med. Imaging 7(3), 031505 (2020)

    Article  Google Scholar 

  14. Zwanenburg, A., et al.: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2), 328–338 (2020)

    Article  Google Scholar 

  15. Bakas, S., et al.: In vivo detection of EGFRvlll in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the \(\varphi \)-index. Clin. Cancer Res. 23(16), 4724–4734 (2017)

    Article  Google Scholar 

  16. Binder, Z.A., et al.: Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 34(1), 163–177 (2018)

    Article  Google Scholar 

  17. Akbari, H., et al.: In vivo evaluation of EGFRvlll mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol. 20(8), 1068–1079 (2018)

    Article  Google Scholar 

  18. Bakas, S., et al.: GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 144–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30858-6_13

    Chapter  Google Scholar 

  19. Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56(6), 793–825 (2008)

    Article  MathSciNet  Google Scholar 

  20. Ostrom, Q.T., et al.: Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008–2012. Neuro-oncology 17(suppl\(\_\)4), iv1–iv62 (2015)

    Google Scholar 

  21. Konukoglu, E., et al.: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans. Med. Imaging 29(1), 77–95 (2009)

    Article  Google Scholar 

  22. Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images using EM algorithm and diffusion reaction modeling. IEEE Trans. Med. Imaging 30(2), 375–390 (2010)

    Article  Google Scholar 

  23. Scheufele, K., Mang, A., Gholami, A., Davatzikos, C., Biros, G., Mehl, M.: Coupling brain-tumor biophysical models and diffeomorphic image registration. Comput. Methods Appl. Mech. Eng. 347, 533–567 (2019)

    Article  MathSciNet  Google Scholar 

  24. Menze, B.H., et al.: A generative approach for image-based modeling of tumor growth. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 735–747. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_60

    Chapter  Google Scholar 

  25. Wang, C.H., et al.: Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Can. Res. 69(23), 9133–9140 (2009)

    Article  Google Scholar 

  26. Geremia, E., Menze, B.H., Prastawa, M., Weber, M.-A., Criminisi, A., Ayache, N.: Brain tumor cell density estimation from multi-modal MR images based on a synthetic tumor growth model. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 273–282. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36620-8_27

    Chapter  Google Scholar 

  27. Jackson, P.R., Juliano, J., Hawkins-Daarud, A., Rockne, R.C., Swanson, K.R.: Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice. Bull. Math. Biol. 77(5), 846–856 (2015)

    Article  MathSciNet  Google Scholar 

  28. Ivkovic, S., et al.: Direct inhibition of myosin ii effectively blocks glioma invasion in the presence of multiple motogens. Mol. Biol. Cell 23(4), 533–542 (2012)

    Article  Google Scholar 

  29. Wong, K.C., Summers, R.M., Kebebew, E., Yao, J.: Tumor growth prediction with reaction-diffusion and hyperelastic biomechanical model by physiological data fusion. Med. Image Anal. 25(1), 72–85 (2015)

    Article  Google Scholar 

  30. Clatz, O., et al.: Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging 24(10), 1334–1346 (2005)

    Article  Google Scholar 

  31. Rahman, M.M., Feng, Y., Yankeelov, T.E., Oden, J.T.: A fully coupled space-time multiscale modeling framework for predicting tumor growth. Comput. Methods Appl. Mech. Eng. 320, 261–286 (2017)

    Article  MathSciNet  Google Scholar 

  32. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  33. Scarpace, L., et al.: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Arch. 11(4), 1 (2016)

    Google Scholar 

  34. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive. Nat. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  35. Cox, R., et al.: A (sort of) new image data format standard: Nifti-1: we 150. Neuroimage 22 (2004). https://nifti.nimh.nih.gov/nifti-1/documentation/hbm_nifti_2004.pdf

  36. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  37. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Scientific data 4, 170117 (2017)

    Article  Google Scholar 

  38. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  39. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)

    Article  Google Scholar 

  40. Yushkevich, P.A., Pluta, J., Wang, H., Wisse, L.E., Das, S., Wolk, D.: Fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 Tesla and 7 Tesla T2-weighted MRI. Alzheimer’s Dementia 7(12), P126–P127 (2016)

    Article  Google Scholar 

  41. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  42. Davatzikos, C., et al.: Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. J. Med. Imaging 5(1), 011018 (2018)

    Article  Google Scholar 

  43. Rathore, S., et al.: Brain cancer imaging phenomics toolkit (brain-CaPTk): an interactive platform for quantitative analysis of glioblastoma. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 133–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_12

    Chapter  Google Scholar 

  44. Pati, S., et al.: The cancer imaging phenomics toolkit (CaPTk): technical overview. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 380–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_38

    Chapter  Google Scholar 

  45. Thakur, S., et al.: Brain extraction on MRI scans in presence of diffuse glioma: multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. NeuroImage 220, 117081 (2020)

    Article  Google Scholar 

  46. Allen, D.M.: The relationship between variable selection and data agumentation and a method for prediction. Technometrics 16(1), 125–127 (1974)

    Article  MathSciNet  Google Scholar 

  47. Kather, J.N., et al.: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25(7), 1054–1056 (2019)

    Article  Google Scholar 

  48. Kuo, C.-C., et al.: Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digit. Med. 2(1), 1–9 (2019)

    Article  Google Scholar 

  49. Student: Probable error of a correlation coefficient. Biometrika, pp. 302–310 (1908)

    Google Scholar 

  50. Mang, A., et al.: SIBIA-GLS: scalable biophysics-based image analysis for glioma segmentation. In: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), MICCAI (2017)

    Google Scholar 

Download references

Acknowledgments

Research reported in this publication was partly supported by the National Institutes of Health (NIH) under award number NIH/NCI:U01CA242871, NIH/NINDS:R01NS042645, NIH/NCI:U24CA189523. The content of this publication is solely the responsibility of the authors and does not represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyridon Bakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pati, S. et al. (2021). Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72084-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72083-4

  • Online ISBN: 978-3-030-72084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics