Skip to main content

Van der Pol Oscillators Based on Transistor Structures with Negative Differential Resistance for Infocommunication System Facilities

  • Chapter
  • First Online:
Data-Centric Business and Applications

Abstract

The paper proposes new circuits of Van der Pol oscillators based on nonlinear and reactive properties of transistor structures with negative differential resistance to be employed in facilities of infocommunication systems. Mathematical models of voltage-controlled Van der Pol oscillators, which are based on nonlinear and reactive properties of transistor structures with negative differential resistance, and generate electric oscillation with regular dynamics, are improved. Influence of additive white noise on dynamics of electric oscillations of the Van der Pol oscillators is investigated. Results of theoretical calculations, numerical simulations and experimental studies of dynamics of the electric oscillation of the microwave Van der Pol oscillators in the frequency ranges 880…910 MHz and 1.8…2.1 GHz are presented. Application of the reactive properties of transistor structures with negative differential resistance provides the parameter retuning expansion for the self-oscillating systems of Van der Pol oscillators up to 20…30% with operation modes being stable. The effective relative operational frequency retuning is 3.4% for the range of 880…910 MHz and 9.88% for the range of 1.8…2.1 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kryvinska N (2010) Converged network service architecture: a platform for integrated services delivery and interworking. Electronic Business series, vol 2. International Academic Publishers, Peter Lang Publishing Group

    Google Scholar 

  2. Kryvinska N (2008) An analytical approach for the modeling of real-time services over IP network. Math Comput Simul 79(4):980–990. https://doi.org/10.1016/j.matcom.2008.02.016

    Article  MathSciNet  MATH  Google Scholar 

  3. Kryvinska N (2004) Intelligent network analysis by closed queuing models. Telecommun Syst 27:85–98. https://doi.org/10.1023/B:TELS.0000032945.92937.8f

    Article  Google Scholar 

  4. Kryvinska N, Zinterhof P, van Thanh D (2007) An analytical approach to the efficient real-time events/services handling in converged network environment. In: Enokido T, Barolli L, Takizawa M (eds) Network-based information systems. NBiS 2007. Lecture notes in computer science, vol 4658. Springer, Berlin, Heidelberg

    Google Scholar 

  5. Kryvinska N, Zinterhof P, van Thanh D (2007) New-emerging service-support model for converged multi-service network and its practical validation. In: First international conference on complex, intelligent and software intensive systems (CISIS’07). IEEE, pp 100–110. https://doi.org/10.1109/cisis.2007.40

  6. Ageyev DV, Salah MT (2016) Parametric synthesis of overlay networks with self-similar traffic. Telecommun Radio Eng (English translation of Elektrosvyaz and Radiotekhnika) 75(14):1231–1241. https://doi.org/10.1615/TelecomRadEng.v75.i14.10

    Article  Google Scholar 

  7. Ageyev D, Qasim N (2015) LTE EPS network with self-similar traffic modeling for performance analysis. In: Proceedings of the 2015 second international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Kharkov, Ukraine, IEEE, 13–15 Oct 2015, pp 275–277. https://doi.org/10.1109/infocommst.2015.7357335

  8. Ageyev DV, Evlash DV (2008) Multiservice telecommunication systems design with network’s incoming self-similarity flow. In: Proceedings of the international conference on modern problems of radio engineering, telecommunications and computer science (TCSET 2008), Lviv-Slavsko, 19–23 Feb 2008, pp 403–405

    Google Scholar 

  9. Ageyev D et al (2018) Method of self-similar load balancing in network intrusion detection system. In: 2018 28th International conference radioelektronika (RADIOELEKTRONIKA), IEEE, 19–20 Apr 2018, pp 1–4. https://doi.org/10.1109/radioelek.2018.8376406

  10. Ageyev D et al (2019) Infocommunication networks design with self-similar traffic. In: 2019 IEEE 15th international conference on the experience of designing and application of CAD systems (CADSM). IEEE, 26 Feb–2 Mar 2019, pp 24–27. https://doi.org/10.1109/cadsm.2019.8779314

  11. Ageyev D et al (2018) Provision security in SDN/NFV. In: 2018 14th International conference on advanced trends in radioelecrtronics, telecommunications and computer engineering (TCSET), IEEE, 20–24 Feb 2018, pp 506–509. https://doi.org/10.1109/tcset.2018.8336252

  12. Ageyev D et al (2018) Classification of existing virtualization methods used in telecommunication networks. In: Proceedings of the 2018 IEEE 9th international conference on dependable systems, services and technologies (DESSERT), IEEE, 24–27 May 2018, pp 83–86. https://doi.org/10.1109/dessert.2018.8409104

  13. Radivilova T et al (2018) Decrypting SSL/TLS traffic for hidden threats detection. In: Proceedings of the 2018 IEEE 9th international conference on dependable systems, services and technologies (DESSERT), IEEE, 24–27 May 2018, pp 143–146. https://doi.org/10.1109/dessert.2018.8409116

  14. Radivilova T, Kirichenko L, Ageiev D, Bulakh V (2020) The methods to improve quality of service by accounting secure parameters. In: Hu Z, Petoukhov S, Dychka I, He M (eds) Advances in computer science for engineering and education II. ICCSEEA 2019. Advances in intelligent systems and computing, vol 938. Springer, Cham

    Google Scholar 

  15. Radivilova T, Kirichenko L, Ivanisenko I (2016) Calculation of distributed system imbalance in condition of multifractal load. In: Proceedings of the third international scientific-practical conference problems of infocommunications science and technology, Kharkiv, Ukraine, 4–6 Oct 2016, pp 156–158. https://doi.org/10.1109/infocommst.2016.7905366

  16. Ivanisenko I, Kirichenko L, Radivilova T (2016) Investigation of multifractal properties of additive data stream. In: Proceedings of the IEEE first international conference on data stream mining & processing, Lviv, Ukraine, 23–27 Aug 2016, pp 305–308. https://doi.org/10.1109/dsmp.2016.7583564

  17. Ivanisenko I, Radivilova T (2015) The multifractal load balancing method. In: Proceedings of the second international scientific-practical conference problems of infocommunications science and technology, Kharkiv, Ukraine, 13–15 Oct 2015, pp 123–123. https://doi.org/10.1109/infocommst.2015.7357289

  18. Skulysh M (2017) The method of resources involvement scheduling based on the long-term statistics ensuring quality and performance parameters. In: Proceedings of the 2017 international conference on information and telecommunication technologies and radio electronics, Odessa, Ukraine, 11–15 Sept 2017. https://doi.org/10.1109/ukrmico.2017.8095430

  19. Globa L, Skulysh M, Reverchuk A (2014) Control strategy of the input stream on the online charging system in peak load moments. In: Proceedings of the 24th international crimean conference microwave & telecommunication technology, sevastopol, Ukraine, 7–13 Sept 2014. https://doi.org/10.1109/crmico.2014.6959409

  20. Skulysh M, Romanov O (2018) The structure of a mobile provider network with network functions virtualization. In: Proceedings of the 14th international conference on advanced trends in radioelecrtronics, telecommunications and computer engineering, Lviv-Slavske, Ukraine, 20–24 Feb 2018. https://doi.org/10.1109/tcset.2018.8336370

  21. Skulysh MA (2019) Managing the process of servicing hybrid telecommunications services. Quality control and interaction procedure of service subsystems. Adv Intell Syst Comput 889:244–256. https://doi.org/10.1007/978-3-030-03314-9_22

    Article  Google Scholar 

  22. Kennedy MP, Rovatti R, Setti G (2000) Chaotic electronics in telecommunications. CRC Press London

    Google Scholar 

  23. Kushnir NY, Horlsy PP, Grygoryshyn AN (2005) Dynamic chaos in phase syncronization devices. In: 2005 15th International crimean conference microwave and telecommunication technology, CriMiCo’2005—conference proceedings, vol 1, pp 346–347. https://doi.org/10.1109/crmico.2005.1564936

  24. Anishchenko VS, Vadivasova TE, Strelkova GI (2014) Deterministic nonlinear systems. Springer International Publishing, Switzerland, A Short Course

    Book  Google Scholar 

  25. Galiuk SD, Kushnir MY, Politanskyi RL (2011) Communication with use of symbolic dynamics of chaotic systems. In: CriMiCo 2011—2011 21st international crimean conference: microwave and telecommunication technology, conference proceedings, pp 423–424

    Google Scholar 

  26. Chua LO, Yu J, Yu Y (1985) Bipolar—JFET—mosfet negative resistance devices. IEEE Trans Circuits Syst 32(1):46–61. https://doi.org/10.1109/TCS.1985.1085599

    Article  Google Scholar 

  27. Kumar U (2000) Design of an indigenized negative resistance characteristics curve tracer. Active Passuve Elec Comp 23:13–23

    Article  Google Scholar 

  28. Kumar U (2003) Simulation of a novel Bipolar-FET type-S negative resistance circuit. Active and Passive Elec Comp 26:129–132

    Article  Google Scholar 

  29. O’Donoghue K, Kennedy MP, Forbes P, Qu M, Jones S (2005) A fast and simple implementation of chua’s oscillator with cubic-like nonlinearity. Int J Bifurcat Chaos Appl Sci Eng 15(09):2959–2971. https://doi.org/10.1142/S0218127405013800

    Article  MATH  Google Scholar 

  30. O’Donoghue K, Kennedy MP, Forbes P (2005) A fast and simple implementation of Chua’s oscillator using a “cubic-like” Chua diode. In: Proceedings of the 2005 European conference on circuit theory and design, Cork, Ireland, 2 Sept 2005, vol 2, pp 1–3. https://doi.org/10.1109/ecctd.2005.1522998

  31. Eltawil AM, Elwakil AS (1999) Low-voltage chaotic oscillator with an approximate cubic nonlinearity. Int J Electron Commun (AEU) 53(3):11–17

    Google Scholar 

  32. Kushnir M, Galiuk S, Rusyn V, Kosovan G, Vovchuk D (2014) Computer modeling of information properties of deterministic chaos. In: Proceedings of the 7th chaotic modeling and simulation international conference (CHAOS 2014), pp. 265–276

    Google Scholar 

  33. Rusyn V, Kushnir M, Galameiko O (2012) Hyperchaotic control by thresholding method. In: Proceedings of international conference on modern problem of radio engineering, telecommunications and computer science, Lviv-Slavske, Ukraine, 21–24 Feb 2012, p 67

    Google Scholar 

  34. Semenko AI, Bokla NI, Kushnir MY, Kosovan GV (2018) Features of creating based on chaos pseudo-random sequences. In: Proceedings 14th international conference on advanced trends in radioelectronics, telecommunications and computer engineering, TCSET 2018, Slavske, Ukraine, 20–24 Feb 2018, pp 1087–1090. https://doi.org/10.1109/tcset.2018.8336383

  35. Semenov A, Osadchuk O, Semenova O et al (2018) Signal statistic and informational parameters of deterministic chaos transistor oscillators for infocommunication systems. In: 2018 International scientific-practical conference problems of infocommunications. Science and technology (PIC S&T), Kharkiv, Ukraine, 9–12 Oct 2018, pp 730–734. https://doi.org/10.1109/infocommst.2018.8632046

  36. Kushnir M, Ivaniuk P, Vovchuk D, Galiuk S (2015) Information security of the chaotic communication systems. In: Proceedings of the 8th Chaotic Modeling and Simulation International Conference, CHAOS 2015, Paris, France, pp 441–452

    Google Scholar 

  37. Volos CK, Kyprianidis IM, Stouboulos IN (2006) Experimental demonstration of a chaotic cryptographic scheme. WSEAS Trans Circ Syst 5(11):1654–1661

    Google Scholar 

  38. Volos CK, Kyprianidis IM, Stouboulos IN (2006) Chaotic cryptosystem based on inverse duffing circuit. In: Proc of the 5th WSEAS international conference on non-linear analysis, non-linear systems and chaos, Bucharest, Romania, Oct 16–18, 2006, pp 92–97

    Google Scholar 

  39. Semenov A, Baraban S, Semenova O, Voznyak O, Vydmysh A, Yaroshenko L (2019) Statistical express control of the peak values of the differential-thermal analysis of solid materials. Solid State Phenom 291:28–41. https://doi.org/10.4028/www.scientific.net/SSP.291.28

    Article  Google Scholar 

  40. Ulansky V, Raza A, Oun H (2019) Electronic circuit with controllable negative differential resistance and its applications. Electronics 8(4):409. https://doi.org/10.3390/electronics8040409

    Article  Google Scholar 

  41. Ulansky VV, Ben Suleiman SF (2013) Negative differential resistance based voltage-controlled oscillator for VHF band. In: 2013 IEEE XXXIII international scientific conference electronics and nanotechnology (ELNANO), Kiev, 16–19 Apr 2013, pp 80–84. https://doi.org/10.1109/elnano.2013.6552016

  42. Semenov AO, Baraban SV, Osadchuk OV et al (2020) Microelectronic pyroelectric measuring transducers. In: Tiginyanu I, Sontea V, Railean S (eds) 4th International conference on nanotechnologies and biomedical engineering, ICNBME 2019, Chisinau, Moldova, 18–21 Sept 2019. IFMBE proceedings, vol 77, pp 393–397. https://doi.org/10.1007/978-3-030-31866-6_72

  43. Semenov A, Osadchuk O, Semenova O et al (2021) Research of dynamic processes in the deterministic chaos oscillator based on the colpitts scheme and optimization of its self-oscillatory system parameters. Lect Notes Data Eng Commun Technol 48:181–205. https://doi.org/10.1007/978-3-030-43070-2_10

    Article  Google Scholar 

  44. Ulansky VV et al (2016) Optimization of NDR VCOs for microwave applications. In: 2016 IEEE 36th international conference on electronics and nanotechnology (ELNANO), Kiev, 19–21 Apr 2016, pp 353–357. https://doi.org/10.1109/elnano.2016.7493083

  45. Tamaševičius A, Bumelienė S, Kirvaitis R et al (2009) Autonomous duffing-holmes type chaotic oscillator. Elektronika ir Elektrotechnika 5(93):43–46

    Google Scholar 

  46. Tamaševičiūtė E, Tamaševičius A, Mykolaitis G et al (2008) Analogue electrical circuit for simulation of the duffing-holmes equation. Nonlinear Anal Model Control 13(2):241–252

    Article  Google Scholar 

  47. IEEE standard for information technology (2007) Telecommunications and information exchange between systems. Local and metropolitan area networks. Specific requirements. Part 15.4: wireless medium access control (MAC) and Physical Layer (PHY) Specifications for low-rate wireless personal area networks (WPANs); Amendment 1: Add Alternate PHYs

    Google Scholar 

  48. Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems, first report and order. Federal communications commission (FCC), ET Docket 98–153, FCC 02-48; Adopted: February 14, 2002; Released: April 22, 2002

    Google Scholar 

  49. Report from the commission to the european parliament and the council on the implementation of the radio spectrum policy programme, brussels, 22 Apr 2014. 13 p. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2014:0228:FIN:EN:PDF. Accessed 15 Jan 2020

  50. Khanna APS (2015) State of the art in microwave VCOs. Microwave J 58(5):22–42

    Google Scholar 

  51. Do TNT, Lai S, Hörberg M et al (2015) A MMIC GaN HEMT voltage-controlled-oscillator with high tuning linearity and low phase noise. In: 2015 IEEE compound semiconductor integrated circuit symposium (CSICS), 11–14 Oct 2015, New Orleans, LA, USA, pp 1–4. https://doi.org/10.1109/csics.2015.7314478

  52. Kang S, Chien JC, Niknejad AM (2011) A 100 GHz phase-locked loop in 0.13 µm SiGe BiCMOS process. In: 2011 IEEE radio frequency integrated circuits symposium (RFIC), 5–7 June 2011, Baltimore, MD, USA, pp 1–4. https://doi.org/10.1109/rfic.2011.5940606

  53. Kang S, Chien JC, Niknejad AM (2014) A W-Band low-noise PLL with a fundamental VCO in SiGe for millimeter-wave applications. IEEE Trans Microw Theory Tech 62(10):2390–2404. https://doi.org/10.1109/tmtt.2014.2345342

    Article  Google Scholar 

  54. Gan KJ, Jiang ZJ, Chen YH, Yeh WK (2016) Application of NDR-based Van der Pol oscillator based on BiCMOS technology. J Electron Commun 16(1):189–198. https://doi.org/10.17654/EC016010189

    Article  Google Scholar 

  55. Gan KJ, Jiang ZJ, Chan DY et al (2013) Design and application of Van Der Pol oscillator using NDR circuit. In: 2013 IEEE international symposium on next-generation electronics (ISNE), 25–26 Feb 2013, Kaohsiung, Taiwan, pp 329–332. https://doi.org/10.1109/isne.2013.6512358

  56. Semenov A (2016) The Van der Pol’s mathematical model of the voltage-controlled oscillator based on a transistor structure with negative resistance. In: Proceedings of the XIII international conference modern problems of radio engineering, telecommunications, and computer science, Lviv-Slavsko, Ukraine, 23–26 Feb 2016, pp 100–104. https://doi.org/10.1109/tcset.2016.7451982

  57. Kuznetsov AP et al (2010) Synchronization in tasks [Sinhronizatsiya v zadachah]. Publishing center Nauka, Saratov, Russia

    Google Scholar 

  58. Mathis W, Bremer J (2009) Modelling and design concepts for electronic oscillator and its synchronization. Open Cybern Syst J 3:47–60

    Article  Google Scholar 

  59. Rybin YK (2014) Measuring signal generators. Springer, Dordrecht, Heidelberg, London, New York

    Book  Google Scholar 

  60. Feudel U, Kuznetsov S, Pikovsky A (2006) Strange nonchaotic attractors. dynamics between order and chaos in quasiperiodically forced systems. In: World scientific series on nonlinear science, series a—vol 56, World Scientific, Singapore

    Google Scholar 

  61. Kuznetsov SP (2011) Hyperbolic Chaos: A Physicist’s View. In: Luo ACJ, Afraimovich V (eds) Series: mathematical methods and modeling for complex phenomena. Higher Education Press, Beijing and Springer: Heidelberg, Dordrecht, London, New York

    Google Scholar 

  62. Kuznetsov SP (2006) Dinamicheskiy haos [Dynamical chaos], 2nd edn. Fizmatlit, Moscow, Russia

    Google Scholar 

  63. Emelianova YP, Kuznetsov AP, Turukina LV (2014) Quasi-periodic bifurcations and “amplitude death” in low-dimensional ensemble of van der Pol oscillators. Phys Lett A 378(3):153–157. https://doi.org/10.1016/j.physleta.2013.10.049

    Article  MATH  Google Scholar 

  64. Kuznetsov AP, Seleznev EP, Stankevich NV (2012) Nonautonomous dynamics of coupled van der Pol oscillators in the regime of amplitude death. Commun Nonlinear Sci Numer Simul 17(9):3740–3746. https://doi.org/10.1016/j.cnsns.2012.01.019

    Article  MathSciNet  MATH  Google Scholar 

  65. Kuptsov PV, Kuptsova AV (2017) Radial and circular synchronization clusters in extended starlike network of van der Pol oscillators. Commun Nonlinear Sci Numer Simul 50:115–127. https://doi.org/10.1016/j.cnsns.2017.03.003

    Article  MathSciNet  MATH  Google Scholar 

  66. Buckingham NJ (1983) Noise in electronic devices and systems. Wiley, New York

    Google Scholar 

  67. Anishchenko VS et al (2005) Statistical properties of dynamical chaos. Phys Usp 48(2):151–166. https://doi.org/10.1070/PU2005v048n02ABEH002070

    Article  Google Scholar 

  68. Osadchuk VS, Osadchuk AV, Semenov AA, Semenova EA (2010) Experimental research and simulation of microwave oscillator based on structure of static inductance transistor with negative resistance. In: 2010 20th International crimean conference “microwave & telecommunication technology”, Sevastopol, Ukraine, 13–17 September 2010, pp 187–188. https://doi.org/10.1109/crmico.2010.5632543

  69. Semenov A, Semenova O, Osadchuk O (2015) The UHF oscillators based on a HEMT structure with negative conductivity. In: 2015 International siberian conference on control and communications (SIBCON), Omsk, Russia, 21–23 May 2015, pp 1–4. https://doi.org/10.1109/sibcon.2015.7147215

  70. Osadchuk AV, Semenov AA, Baraban SV et al (2013) Noncontact infrared thermometer based on a self-oscillating lambda type system for measuring human body’s temperature. In: 2013 23rd International crimean conference “microwave & telecommunication technology”, Sevastopol, Ukraine, 8–14 Sept 2013, pp 1069–1070

    Google Scholar 

  71. Semenov A (2017) Mathematical model of the microelectronic oscillator based on the BJT-MOSFET structure with negative differential resistance. In: 2017 IEEE 37th international conference on electronics and nanotechnology (ELNANO), Kiev, Ukraine, 18–20 Apr 2017, pp 146–151. https://doi.org/10.1109/elnano.2017.7939736

  72. Semenov A (2016) Mathematical simulation of the chaotic oscillator based on a field-effect transistor structure with negative resistance. In: 2016 IEEE 36th international conference on electronics and nanotechnology (ELNANO), Kiev, Ukraine, 19–21 Apr 2016, pp 52–56. https://doi.org/10.1109/elnano.2016.7493008

  73. Osadchuk VS, Osadchuk AV (2005) The magnetic controlled autogenerator superhigh frequencies. In: 2005 15th International crimean conference microwave & telecommunication technology, Sevastopol, Crimea, 12–16 Sept 2005, vol 2, pp 449–450. https://doi.org/10.1109/crmico.2005.1564986

  74. Semenov A et al (2019) A deterministic chaos ring oscillator based on a MOS transistor structure with negative differential resistance. In: 2019 IEEE international scientific-practical conference problems of infocommunications, Science and technology (PIC S&T), Kyiv, Ukraine, 8–11 Oct 2019, pp 709–714. https://doi.org/10.1109/picst47496.2019.9061330

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Semenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Semenov, A. et al. (2021). Van der Pol Oscillators Based on Transistor Structures with Negative Differential Resistance for Infocommunication System Facilities. In: Ageyev, D., Radivilova, T., Kryvinska, N. (eds) Data-Centric Business and Applications. Lecture Notes on Data Engineering and Communications Technologies, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-71892-3_3

Download citation

Publish with us

Policies and ethics