Skip to main content
Book cover

Spin Ice pp 143–188Cite as

Modelling of Classical Spin Ice: Coulomb Gas Description of Thermodynamic and Dynamic Properties

  • Chapter
  • First Online:
  • 1236 Accesses

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

Abstract

The Coulomb gas description of spin ice has revolutionized our understanding of these systems. Built on the remarkable self screening of the dipolar spin ice model, the emergence of magnetic monopole quasi-particles has allowed a depth of analytic and conceptual progress that is far beyond the spin description. After defining the magnetic Coulomb gas, or magnetolyte, we bench mark it against dipolar spin ice, before presenting a Debye-Hückel theory modified to take into account the underlying constraints of the spin degrees of freedom. The calculated specific heat compares favourably with simulation and experiment, with quantitative agreement at high and at low temperature. Moving to dynamical properties, we show how the temperature dependence of experimentally observed relaxation time scales is captured by monopole dynamics. We show that the magnetolyte exhibits non-Ohmic contributions to the monopole conductivity, the AC Wien effect, and we propose detailed protocols for its observation in experiments. Thermal and field quenches take the magnetolyte far from equilibrium, exposing a cornucopia of phenomena characteristic of reaction diffusion processes, dimer absorption and kinetically constrained models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The diffusion constant for a random walk on a diamond lattice is \(D=\frac{r_d^2}{6\tau _0}\) [24], which is modified to take into account both the spatial [24] and temporal [31] constraints of monopole hopping in the magnetolyte.

References

  1. S.V. Isakov, K. Gregor, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 93, 167204 (2004). https://doi.org/10.1103/PhysRevLett.93.167204

  2. C.L. Henley, Annu. Rev. Condens. Matter Phys. 1, 179 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104138

  3. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/nature06433

  4. I.A. Ryzhkin, J. Exp. Theor. Phys. 101, 481–486 (2005). https://doi.org/10.1134/1.2103216

  5. L.D.C. Jaubert, P.C.W. Holdsworth, Nat. Phys. 5, 258 (2009). https://doi.org/10.1038/NPHYS1227

  6. C. Castelnovo, R. Moessner, S. Sondhi, Annu. Rev. Condens. Matter Phys. 3, 35 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125058

  7. S. Powell, Phys. Rev. B 84, 094437 (2011). https://doi.org/10.1103/PhysRevB.84.094437

  8. L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 100, 067207 (2008). https://doi.org/10.1103/PhysRevLett.100.067207

  9. L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 105, 087201 (2010). https://doi.org/10.1103/PhysRevLett.105.087201

  10. M. Hermele, M.P.A. Fisher, L. Balents, Phys. Rev. B 69, 64404 (2004). https://doi.org/10.1103/PhysRevB.69.64404

  11. O. Benton, O. Sikora, N. Shannon, Phys. Rev. B 86, 075154 (2012). https://doi.org/10.1103/PhysRevB.86.075154

  12. L. Balents, Nature 464, 199 (2010). https://doi.org/10.1038/nature08917

  13. M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, K.W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997). https://doi.org/10.1103/PhysRevLett.79.2554

  14. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001). https://doi.org/10.1126/science.1064761

  15. B.C. den Hertog, M.J. Gingras, Phys. Rev. Lett. 84, 3430 (2000). https://doi.org/10.1103/PhysRevLett.84.3430

  16. T. Yavors’kii, T. Fennell, M.J.P. Gingras, S.T. Bramwell, Phys. Rev. Lett. 101, 037204 (2008). https://doi.org/10.1103/PhysRevLett.101.037204

  17. P. Henelius, T. Lin, M. Enjalran, Z. Hao, J.G. Rau, J. Altosaar, F. Flicker, T. Yavors’kii, M.J.P. Gingras, Phys. Rev. B 93, 024402 (2016). https://doi.org/10.1103/PhysRevB.93.024402

  18. P.W. Anderson, Phys. Rev. 102, 1008 (1956). https://doi.org/10.1103/PhysRev.102.1008

  19. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). https://doi.org/10.1021/ja01315a102

  20. S.V. Isakov, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 95, 217201 (2005). https://doi.org/10.1103/PhysRevLett.95.217201

  21. T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. McMorrow, S.T. Bramwell, Science 326, 415 (2009). https://doi.org/10.1126/science.1177582

  22. R.G. Melko, M.J.P. Gingras, J. Phys.: Condens. Matter 16, R1277 (2004). https://doi.org/10.1088/0953-8984/16/43/R02

  23. G. Möller, R. Moessner, Phys. Rev. Lett. 96, 237202 (2006). https://doi.org/10.1103/PhysRevLett.96.237202

  24. C. Castelnovo, R. Moessner, S.L. Sondhi, Phys. Rev. B 84, 144435 (2011). https://doi.org/10.1103/PhysRevB.84.144435

  25. D. Pomaranski, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Nat. Phys. 9, 353 (2013). https://doi.org/10.1038/NPHYS2591

  26. A. Sen, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 110, 107202 (2013). https://doi.org/10.1103/PhysRevLett.110.107202

  27. L.D.C. Jaubert, P.C.W. Holdsworth, J. Phys.: Condens. Matter 23, 164222 (2011). https://doi.org/10.1088/0953-8984/23/16/164222

  28. V. Kaiser, J. Bloxsom, L. Bovo, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Phys. Rev. B 98, 144413 (2018). https://doi.org/10.1103/PhysRevB.98.144413

  29. M.E. Brooks-Bartlett, S.T. Banks, L.D.C. Jaubert, A. Harman-Clarke, P.C.W. Holdsworth, Phys. Rev. X 4, 011007 (2014). https://doi.org/10.1103/PhysRevX.4.011007

  30. P.C. Guruciaga, S.A. Grigera, R.A. Borzi, Phys. Rev. B 90, 184423 (2014). https://doi.org/10.1103/PhysRevB.90.184423

  31. V. Kaiser, The Wien effect in electric and magnetic coulomb systems: From electrolytes to spin ice. Ph.D. Thesis, ENS Lyon / TU Dresden (2014)

    Google Scholar 

  32. Y. Levin, Reports on Progress in Physics 65, 1577 (2002). https://doi.org/10.1088/0034-4885/65/11/201

  33. V. Kaiser, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Nat. Mater. 12, 1033 (2013). https://doi.org/10.1038/nmat3729

  34. L. Savary, L. Balents, Phys. Rev. Lett. 108, 37202 (2012). https://doi.org/10.1103/PhysRevLett.108.37202

  35. D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, R.S. Perry, Science 326, 411 (2009). https://doi.org/10.1126/science.1178868

  36. J. Snyder, B. Ueland, J. Slusky, H. Karunadasa, R. Cava, P. Schiffer, Phys. Rev. B 69, 064414 (2004). https://doi.org/10.1103/PhysRevB.69.064414

  37. L.D.C. Jaubert, M. Haque, R. Moessner, Phys. Rev. Lett. 107, 177202 (2011). https://doi.org/10.1103/PhysRevLett.107.177202

  38. C. Castelnovo, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 104, 107201 (2010). https://doi.org/10.1103/PhysRevLett.104.107201

  39. D. Levis, L.F. Cugliandolo, Europhys. Lett. 97, 30002 (2012). https://doi.org/10.1209/0295-5075/97/30002

  40. D. Slobinsky, C. Castelnovo, R.A. Borzi, A.S. Gibbs, A.P. Mackenzie, R. Moessner, S.A. Grigera, Phys. Rev. Lett. 105, 267205 (2010). https://doi.org/10.1103/PhysRevLett.105.267205

  41. S. Mostame, C. Castelnovo, R. Moessner, S.L. Sondhi, Proc. Natl. Acad. Sci. 111, 640 (2014). https://doi.org/10.1073/pnas.1317631111

  42. S.R. Giblin, S.T. Bramwell, P.C.W. Holdsworth, D. Prabhakaran, I. Terry, Nat. Phys. 7, 252 (2011). https://doi.org/10.1038/NPHYS1896

  43. C. Paulsen, M.J. Jackson, E. Lhotel, B. Canals, D. Prabhakaran, K. Matsuhira, S.R. Giblin, S.T. Bramwell, Nat. Phys. 10, 135 (2014). https://doi.org/10.1038/nphys2847

  44. M.J. Jackson, E. Lhotel, S.R. Giblin, S.T. Bramwell, D. Prabhakaran, K. Matsuhira, Z. Hiroi, Q. Yu, C. Paulsen, Phys. Rev. B 90, 064427 (2014). https://doi.org/10.1103/PhysRevB.90.064427

  45. C. Paulsen, S.R. Giblin, E. Lhotel, D. Prabhakaran, G. Balakrishnan, K. Matsuhira, S.T. Bramwell, Nat. Phys. 12, 661 (2016). https://doi.org/10.1038/nphys3704

  46. J.A. Quilliam, L.R. Yaraskavitch, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Phys. Rev. B 83, 094424 (2011). https://doi.org/10.1103/PhysRevB.83.094424

  47. K. Matsuhira, C. Paulsen, E. Lhotel, C. Sekine, Z. Hiroi, S. Takagi, J. Phys. Soc. Jpn. 80, 123711 (2011). https://doi.org/10.1143/JPSJ.80.123711

  48. L.R. Yaraskavitch, H.M. Revell, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Phys. Rev. B 85, 20410 (2012). https://doi.org/10.1103/PhysRevB.85.20410

  49. H.M. Revell, L.R. Yaraskavitch, J.D. Mason, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, P. Henelius, J.B. Kycia, Nat. Phys. 9, 34 (2013). https://doi.org/10.1038/nphys2466

  50. H. Takatsu, K. Goto, H. Otsuka, R. Higashinaka, K. Matsubayashi, Y. Uwatoko, H. Kadowaki, J. Phys. Soc. Jpn. 82, 104710 (2013). https://doi.org/10.7566/JPSJ.82.104710

  51. L. Bovo, J. Bloxsom, D. Prabhakaran, G. Aeppli, S. Bramwell, Nat. Commun. 4, 1535 (2013). https://doi.org/10.1038/ncomms2551

  52. B. Klemke, M. Meissner, P. Strehlow, K. Kiefer, S.A. Grigera, D.A. Tennant, J. Low Temp. Phys. 163, 345 (2011). https://doi.org/10.1007/s10909-011-0348-y

  53. M.J. Matthews, C. Castelnovo, R. Moessner, S.A. Grigera, D. Prabhakaran, P. Schiffer, Phys. Rev. B 86, 214419 (2012). https://doi.org/10.1103/PhysRevB.86.214419

  54. S. Erfanifam, S. Zherlitsyn, S. Yasin, Y. Skourski, J. Wosnitza, A.A. Zvyagin, P. McClarty, R. Moessner, G. Balakrishnan, O.A. Petrenko, Phys. Rev. B 90, 064409 (2014). https://doi.org/10.1103/PhysRevB.90.064409

  55. G. Kolland, O. Breunig, M. Valldor, M. Hiertz, J. Frielingsdorf, T. Lorenz, Phys. Rev. B 86, 060402 (2012). https://doi.org/10.1103/PhysRevB.86.060402

  56. G. Sala, M.J. Gutmann, D. Prabhakaran, D. Pomaranski, C. Mitchelitis, J.B. Kycia, D.G. Porter, C. Castelnovo, J.P. Goff, Nat. Mater. 13, 488 (2014). https://doi.org/10.1038/NMAT3924

  57. E.R. Kassner, A.B. Eyvazov, B. Pichler, T.J.S. Munsie, H.A. Dabkowska, G.M. Luke, J.C.S. Davis, Proc. Natl. Acad. Sci. 112, 8549 (2015). https://doi.org/10.1073/pnas.1511006112

  58. C. Jaccard, Phys. Kondens. Mater. 3, 99 (1964). https://doi.org/10.1007/BF02422356

  59. I.A. Ryzhkin, R.W. Whitworth, J. Phys.: Condens. Matter 9, 395 (1997). https://doi.org/10.1088/0953-8984/9/2/008

  60. S.V. Isakov, K.S. Raman, R. Moessner, S.L. Sondhi, Phys. Rev. B 70, 104418 (2004). https://doi.org/10.1103/PhysRevB.70.104418

  61. L. Jaubert, M. Harris, T. Fennell, R. Melko, S. Bramwell, P. Holdsworth, Phys. Rev. X 3, 011014 (2013). https://doi.org/10.1103/PhysRevX.3.011014

  62. V. Kaiser, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 115, 037201 (2015). https://doi.org/10.1103/PhysRevLett.115.037201

  63. S.T. Bramwell, S.R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, T. Fennell, Nature 461, 956 (2009). https://doi.org/10.1038/nature08500

  64. L. Onsager, J. Chem. Phys. 2, 599 (1934). https://doi.org/10.1063/1.1749541

  65. D.M. Pai, J. Appl. Phys. 46, 5122 (1975). https://doi.org/10.1063/1.321570

  66. C. Castelnovo, Chem. Phys. Chem. 11, 557 (2010). https://doi.org/10.1002/cphc.200900873

  67. R.G. Pearson, Discuss. Faraday Soc. 17, 187 (1954). https://doi.org/10.1039/DF9541700187

  68. D.J. Mead, R.M. Fuoss, J. Am. Chem. Soc. 61, 2047–2053 (1939). https://doi.org/10.1021/ja01877a028

  69. M. Eigen, J. Schoen, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische. Chemie 59, 483 (1955). https://doi.org/10.1002/bbpc.19550590604

  70. A. Persoons, M.V. Beylen, Pure Appl. Chem. 51, 887–900 (1979). https://doi.org/10.1351/pac197951040887

  71. M.I. Ryzhkin, I.A. Ryzhkin, S.T. Bramwell, Europhys. Lett. 104, 37005 (2013). https://doi.org/10.1209/0295-5075/104/37005

  72. J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Nature 413, 48 (2001). https://doi.org/10.1038/35092516

  73. S. Erfanifam, S. Zherlitsyn, J. Wosnitza, R. Moessner, O. Petrenko, G. Balakrishnan, A. Zvyagin, Phys. Rev. B 84, 220404 (2011). https://doi.org/10.1103/PhysRevB.84.220404

  74. S. Dunsiger, A. Aczel, C. Arguello, H. Dabkowska, A. Dabkowski, M.H. Du, T. Goko, B. Javanparast, T. Lin, F. Ning, H. Noad, D. Singh, T. Williams, Y. Uemura, M. Gingras, G. Luke, Phys. Rev. Lett. 107, 207207 (2011). https://doi.org/10.1103/PhysRevLett.107.207207

  75. S.J. Blundell, Phys. Rev. Lett. 108, 147601 (2012). https://doi.org/10.1103/PhysRevLett.108.147601

  76. G. Sala, C. Castelnovo, R. Moessner, S.L. Sondhi, K. Kitagawa, M. Takigawa, R. Higashinaka, Y. Maeno, Phys. Rev. Lett. 108, 217203 (2012). https://doi.org/10.1103/PhysRevLett.108.217203

  77. P. Quémerais, P. McClarty, R. Moessner, Phys. Rev. Lett. 109, 127601 (2012). https://doi.org/10.1103/PhysRevLett.109.127601

  78. L.J. Chang, M.R. Lees, G. Balakrishnan, Y.J. Kao, A.D. Hillier, Sci. Rep. 3, 1881 (2013). https://doi.org/10.1038/srep01881

  79. L. Nuccio, L. Schulz, A.J. Drew, J. Phys. D: Appl. Phys. 47, 473001 (2014). https://doi.org/10.1088/0022-3727/47/47/473001

  80. A.J. Bray, Adv. Phys. 43, 357 (1994). https://doi.org//10.1080/00018739400101505

  81. J. Hamp, A. Chandran, R. Moessner, C. Castelnovo, Phys. Rev. B 92, 075142 (2015). https://doi.org/10.1103/PhysRevB.92.075142

  82. W.H. Zurek, Nature 317, 505 (1985). https://doi.org/10.1038/317505a0

  83. A. del Campo, W.H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014). https://doi.org/10.1142/S0217751X1430018X

  84. V.V. Ginzburg, L. Radzihovsky, N.A. Clark, Phys. Rev. E 55, 395 (1997). https://doi.org/10.1103/PhysRevE.55.395

  85. D. Toussaint, F. Wilczek, J. Chem. Phys. 78, 2642 (1983). https://doi.org/10.1063/1.445022

  86. A.S. Wills, R. Ballou, C. Lacroix, Phys. Rev. B 66, 144407 (2002). https://doi.org/10.1103/PhysRevB.66.144407

  87. G. Möller, R. Moessner, Phys. Rev. B 80, 140409 (2009). https://doi.org/10.1103/PhysRevB.80.140409

  88. G.W. Chern, O. Tchernyshyov, Philos. Trans. R. Soc., A 370, 5718 (2012). https://doi.org/10.1098/rsta.2011.0388

  89. M. Udagawa, M. Ogata, Z. Hiroi, J. Phys. Soc. Jpn. 71, 2365 (2002). https://doi.org/10.1143/JPSJ.71.2365

  90. K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, T. Sakakibara, J. Phys.: Condens. Matter 14, L559 (2002). https://doi.org/10.1088/0953-8984/14/29/101

  91. R. Moessner, S.L. Sondhi, Phys. Rev. B 68, 064411 (2003). https://doi.org/10.1103/PhysRevB.68.064411

Download references

Acknowledgements

The work presented in this article covers a cross section of collaborations by both authors. It is a pleasure to thank all our collaborators for these extensive and fruitful projects and in particular S.T. Banks, S.T. Bramwell, J.T. Chalker, T. Fennell, M.J.P. Gingras, V. Kaiser, L.D.C. Jaubert, and R. Moessner. We are grateful to M.J.P Gingras for providing us with the DSI specific heat data and to V. Kaiser for useful comments on the manuscript. This work was supported in part by EPSRC Grant No. EP/K028960/1 and EPSRC Grant No. EP/M007065/1 (CC) and by the Institut Universitaire de France (PCWH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Castelnovo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castelnovo, C., Holdsworth, P.C.W. (2021). Modelling of Classical Spin Ice: Coulomb Gas Description of Thermodynamic and Dynamic Properties. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_7

Download citation

Publish with us

Policies and ethics