Skip to main content

Nanotechnology for Diagnosis, Imaging, and Treatment of Head and Neck Cancer

  • Chapter
  • First Online:
Early Detection and Treatment of Head & Neck Cancers

Abstract

The emergence of nanotechnology has revolutionized many fields including chemistry, physics, engineering, biology, and medicine. The advent of nanotechnology-based nanomedicine including nanoparticles, nanocarriers, and nanoprobes is promising. However, the application of such materials in particular in cancer management is at an early stage of development. The knowledge about the basic mechanism of interactions of nanoparticles at molecular and cellular levels is not appropriate to disclose their full potential in biology and medicine. Furthermore, despite numerous clinical trials, the translational flow into clinical fields is very limited. This chapter sheds light on a new and challenging topic related to the management of head and neck cancer (HNC) through the application of nanotechnology. A general overview is provided about the available nanoparticles, their classification, and their pathway mechanisms into tumors. Finally, we made an effort to highlight the current nanotechnology-based strategies and active clinical trials targeting HNC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCI. Understanding cancer. p. https://www.cancer.gov/about-cancer/understanding/.

  2. IARC. The International Agency for Research on Cancer. p. https://www.iarc.fr/.

  3. Choi Y-E, Kwak J-W, Park JW. Nanotechnology for early cancer detection. Sensors (Basel) [Internet]. 2010;10(1):428–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22315549.

    Article  CAS  Google Scholar 

  4. Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol [Internet]. 2019;12(1):137. Available from: https://jhoonline.biomedcentral.com/articles/10.1186/s13045-019-0833-3.

    Article  Google Scholar 

  5. Kreuter J. Nanoparticles--a historical perspective. Int J Pharm [Internet]. 2007;331(1):1–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17110063.

    Article  CAS  Google Scholar 

  6. FDA approves KS drug. Food and Drug Administration. Florida Department of Health and rehabilitation services. AIDS Alert [Internet]. 1996;11(1):11–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11363227.

    Google Scholar 

  7. Doxil receives FDA market clearance. AIDS Patient Care STDS [Internet]. 1996;10(2):135. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11361702.

  8. DOXIL approved by FDA. AIDS Patient Care [Internet]. 1995;9(6):306. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11361446.

  9. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med [Internet]. 2006;354(6):567–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16467544.

    Article  CAS  Google Scholar 

  10. Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol [Internet]. 2010;11(1):21–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19897418.

    Article  CAS  Google Scholar 

  11. Directorate-General for Health and Food Safety (European Commission). Scientific basis for the definition of the term “nanomaterial.” 2012 [cited 2020 May 8]; Available from: https://op.europa.eu/en/publication-detail/-/publication/fddead88-e1a6-4b40-8e22-8a7089ee47c3/language-en.

  12. Ebrahimi M, Botelho MG, Dorozhkin SV. Biphasic calcium phosphates bioceramics (HA/TCP): concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater Sci Eng C Mater Biol Appl [Internet]. 2017;71:1293–312. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493116316721.

    Article  CAS  Google Scholar 

  13. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol [Internet]. 2007;2(12):751–60. Available from: http://www.nature.com/articles/nnano.2007.387.

    Article  CAS  Google Scholar 

  14. Omidi Y. Smart multifunctional theranostics: simultaneous diagnosis and therapy of cancer. Bioimpacts [Internet]. 2011;1(3):145–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23678419.

    CAS  Google Scholar 

  15. Jain KK. Role of nanodiagnostics in personalized cancer therapy. Clin Lab Med [Internet]. 2012;32(1):15–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22340841.

    Article  Google Scholar 

  16. Bawa R. Patents and nanomedicine. Nanomedicine (Lond) [Internet]. 2007;2(3):351–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17716180.

    Article  Google Scholar 

  17. Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine (Lond) [Internet]. 2012;7(10):1577–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23148540.

    Article  CAS  Google Scholar 

  18. Woodle MC, Matthay KK, Newman MS, Hidayat JE, Collins LR, Redemann C, et al. Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. Biochim Biophys Acta [Internet]. 1992;1105(2):193–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1586658.

    Article  CAS  Google Scholar 

  19. Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol [Internet]. 2012;52:481–503. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22035254.

    Article  CAS  Google Scholar 

  20. Nguyen KT. Targeted nanoparticles for cancer therapy: promises and challenges. J Nanomed Nanotechnol [Internet]. 2011;02(05). Available from: https://www.omicsonline.org/targeted-nanoparticles-for-cancer-therapy-promises-and-challenges-2157-7439.1000103e.php?aid=2090.

  21. Jabir NR, Anwar K, Firoz CK, Oves M, Kamal MA, Tabrez S. An overview on the current status of cancer nanomedicines. Curr Med Res Opin [Internet]. 2018;34(5):911–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29278015.

    Article  CAS  Google Scholar 

  22. Awasthi R, Roseblade A, Hansbro PM, Rathbone MJ, Dua K, Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets [Internet]. 2018;19(14):1696–709. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29577855.

    Article  CAS  Google Scholar 

  23. Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos [Internet]. 2014;42(4):623–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24492893.

    Article  CAS  Google Scholar 

  24. Dua K, Shukla SD, de Jesus Andreoli Pinto T, Hansbro PM. Nanotechnology: advancing the translational respiratory research. Interv Med Appl Sci [Internet]. 2017;9(1):39–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28932494.

    Google Scholar 

  25. Pillai G. Nanotechnology toward treating cancer. In: Applications of targeted nano drugs and delivery systems [Internet]. Elsevier; 2019. p. 221–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128140291000090.

  26. Sanvicens N, Marco MP. Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol [Internet]. 2008;26(8):425–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18514941.

    Article  CAS  Google Scholar 

  27. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev [Internet]. 2012;41(7):2656–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22189429.

    Article  CAS  Google Scholar 

  28. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res [Internet]. 1986;46(12 Pt 1):6387–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2946403.

    CAS  Google Scholar 

  29. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther [Internet]. 2006;5(8):1909–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16928810.

    Article  CAS  Google Scholar 

  30. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev [Internet]. 2014;66:2–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24270007.

    Article  CAS  Google Scholar 

  31. Li H, Jin H, Wan W, Wu C, Wei L. Cancer nanomedicine: mechanisms, obstacles and strategies. Nanomedicine (Lond) [Internet]. 2018;13(13):1639–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30035660.

    Article  Google Scholar 

  32. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release [Internet]. 2010;148(2):135–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20797419.

    Article  CAS  Google Scholar 

  33. Bazak R, Houri M, El Achy S, Hussein W, Refaat T. Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol [Internet]. 2014;2(6):904–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25279172.

    Article  Google Scholar 

  34. Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J [Internet]. 2007;9(2):E128–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17614355.

    Article  CAS  PubMed Central  Google Scholar 

  35. Gaspar MM, Radomska A, Gobbo OL, Bakowsky U, Radomski MW, Ehrhardt C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv [Internet]. 2012;25(6):310–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22857016.

    Article  CAS  Google Scholar 

  36. Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta [Internet]. 2012;1820(3):291–317. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21851850.

    Article  CAS  Google Scholar 

  37. Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev [Internet]. 2012;64:342–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X12002803.

    Article  Google Scholar 

  38. Harding J, Burtness B. Cetuximab: an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) [Internet]. 2005;41(2):107–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15821783.

    Article  CAS  Google Scholar 

  39. Le UM, Hartman A, Pillai G. Enhanced selective cellular uptake and cytotoxicity of epidermal growth factor-conjugated liposomes containing curcumin on EGFR-overexpressed pancreatic cancer cells. J Drug Target [Internet]. 2018;26(8):676–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29157028.

    Article  CAS  Google Scholar 

  40. Master AM, Sen Gupta A. EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine (Lond) [Internet]. 2012;7(12):1895–906. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23249333.

    Article  CAS  Google Scholar 

  41. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol [Internet]. 2019;9:1370. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31921634.

    Article  Google Scholar 

  42. Eck SM, Blackburn JS, Schmucker AC, Burrage PS, Brinckerhoff CE. Matrix metalloproteinase and G protein coupled receptors: co-conspirators in the pathogenesis of autoimmune disease and cancer. J Autoimmun [Internet]. 33(3–4):214–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19800199.

  43. Awasthi R, Pant I, Kulkarni GT, Satiko Kikuchi I, de Jesus Andreoli Pinto T, Dua K, et al. Opportunities and challenges in nano-structure mediated drug delivery: where do we stand? Curr Nanomedicine [Internet]. 2016;6(2):78–104. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=2468-1873&volume=6&issue=2&spage=78.

    Article  CAS  Google Scholar 

  44. Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res [Internet]. 1986;31(3):288–305. Available from: https://linkinghub.elsevier.com/retrieve/pii/002628628690018X.

    Article  CAS  Google Scholar 

  45. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci [Internet]. 1998;95(8):4607–12. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.95.8.4607.

    Article  CAS  Google Scholar 

  46. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol [Internet]. 2000;156(4):1363–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002944010650067.

    Article  CAS  Google Scholar 

  47. Matsumoto Y, Nichols JW, Toh K, Nomoto T, Cabral H, Miura Y, et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat Nanotechnol [Internet]. 2016;11(6):533–8. Available from: http://www.nature.com/articles/nnano.2015.342.

    Article  CAS  Google Scholar 

  48. WCW C. Nanomedicine 2.0. Acc Chem Res [Internet]. 2017;50(3):627–32. Available from: https://pubs.acs.org/doi/10.1021/acs.accounts.6b00629.

    Article  CAS  Google Scholar 

  49. Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun [Internet]. 2018;9(1):1410. Available from: http://www.nature.com/articles/s41467-018-03705-y.

    Article  CAS  Google Scholar 

  50. Nel A, Ruoslahti E, Meng H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano [Internet]. 2017;11(10):9567–9. Available from: https://pubs.acs.org/doi/10.1021/acsnano.7b07214.

    Article  CAS  Google Scholar 

  51. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem [Internet]. 2016;27(10):2225–38. Available from: https://pubs.acs.org/doi/10.1021/acs.bioconjchem.6b00437.

    Article  CAS  Google Scholar 

  52. Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release [Internet]. 2016;244:108–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365916307799.

    Article  CAS  Google Scholar 

  53. Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater [Internet]. 2020;19(5):566–75. Available from: http://www.nature.com/articles/s41563-019-0566-2.

    Article  CAS  Google Scholar 

  54. de Lázaro I, Mooney DJ. A nanoparticle’s pathway into tumours. Nat Mater [Internet]. 2020;19(5):486–7. Available from: http://www.nature.com/articles/s41563-020-0669-9.

    Article  CAS  Google Scholar 

  55. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater [Internet]. 2016;1(5):16014. Available from: http://www.nature.com/articles/natrevmats201614.

    Article  CAS  Google Scholar 

  56. Petersen GH, Alzghari SK, Chee W, Sankari SS, La-Beck NM. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J Control Release [Internet]. 2016;232:255–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365916302413.

    Article  CAS  Google Scholar 

  57. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer [Internet]. 2017;17(1):20–37. Available from: http://www.nature.com/articles/nrc.2016.108.

    Article  CAS  Google Scholar 

  58. ClinicalTrials.gov U.S. National Library of Medicine. Metronomic oral vinorelbine plus anti-PD-L1/anti-CTLA4 immunotherapy in patients with advanced solid tumours (MOVIE) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03518606.

  59. ClinicalTrials.gov U.S. National Library of Medicine. Basket study to evaluate the therapeutic activity of RO6874281 as a combination therapy in participants with advanced and/or metastatic solid tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03386721.

  60. ClinicalTrials.gov U.S. National Library of Medicine. Ferumoxytol - iron oxide nanoparticle magnetic resonance dynamic contrast enhanced MRI [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01895829.

  61. ClinicalTrials.gov U.S. National Library of Medicine. Paclitaxel albumin-stabilized nanoparticle formulation and carboplatin followed by chemoradiation in treating patients with recurrent head and neck cancer [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01847326.

  62. ClinicalTrials.gov U.S. National Library of Medicine. Dose escalation study of mRNA-2752 for intratumoral injection to patients with advanced malignancies [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03739931.

  63. Adkins D, Ley J, Oppelt P, Gay HA, Daly M, Paniello RC, et al. Impact on health-related quality of life of induction chemotherapy compared with concurrent cisplatin and radiation therapy in patients with head and neck cancer. Clin Oncol (R Coll Radiol) [Internet]. 2019;31(9):e123–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31147146.

    Article  CAS  Google Scholar 

  64. Adkins D, Ley J, Oppelt P, Wildes TM, Gay HA, Daly M, et al. Nab-Paclitaxel-based induction chemotherapy with or without cetuximab for locally advanced head and neck squamous cell carcinoma. Oral Oncol [Internet]. 2017;72:26–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28797458.

    Article  CAS  Google Scholar 

  65. ClinicalTrials.gov U.S. National Library of Medicine. Induction chemotherapy with ACF followed by chemoradiation therapy for Adv Head & Neck Cancer [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01566435.

  66. ClinicalTrials.gov U.S. National Library of Medicine. Chemotherapy and locoregional therapy trial (surgery or radiation) for patients with head and neck cancer (OPTIMA-II) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03107182.

  67. ClinicalTrials.gov U.S. National Library of Medicine. Recombinant EphB4-HSA fusion protein with standard chemotherapy regimens in treating patients with advanced or metastatic solid tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02495896.

  68. ClinicalTrials.gov U.S. National Library of Medicine. Targeted silica nanoparticles for real-time image-guided intraoperative mapping of nodal metastases [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02106598.

  69. ClinicalTrials.gov U.S. National Library of Medicine. Ficlatuzumab w/wo cetuximab in patients w/cetuximab-resistant, recurrent or metastatic head/neck squamous cell carcinoma [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03422536.

  70. Fakurnejad S, van Keulen S, Nishio N, Engelen M, van den Berg NS, Lu G, et al. Fluorescence molecular imaging for identification of high-grade dysplasia in patients with head and neck cancer. Oral Oncol [Internet]. 2019;97:50–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31421471.

    Article  CAS  Google Scholar 

  71. ClinicalTrials.gov U.S. National Library of Medicine. Panitumumab IRDye800 optical imaging study [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02415881.

  72. ClinicalTrials.gov U.S. National Library of Medicine. Panitumumab-IRDye800 and 89Zr-panitumumab in identifying metastatic lymph nodes in patients with squamous cell head and neck cancer [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03733210.

  73. ClinicalTrials.gov U.S. National Library of Medicine. Panitumumab-IRDye800 compared to sentinel node biopsy and (selective) neck dissection in identifying metastatic lymph nodes in patients with head & neck cancer [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03405142.

  74. ClinicalTrials.gov U.S. National Library of Medicine. Carboplatin, nab-paclitaxel, durvalumab before surgery and adjuvant therapy in head and neck squamous cell carcinoma [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03174275.

  75. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev [Internet]. 2015;115(19):10530–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26313138.

    Article  CAS  Google Scholar 

  76. Chakravarty R, Goel S, Dash A, Cai W. Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: an overview. Q J Nucl Med Mol Imaging [Internet]. 2017;61(2):181–204. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28124549.

    Google Scholar 

  77. Chen F, Ma K, Benezra M, Zhang L, Cheal SM, Phillips E, et al. Cancer-targeting ultrasmall silica nanoparticles for clinical translation: physicochemical structure and biological property correlations. Chem Mater [Internet]. 2017;29(20):8766–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29129959.

    Article  CAS  PubMed Central  Google Scholar 

  78. D’Hollander A, Mathieu E, Jans H, Vande Velde G, Stakenborg T, Van Dorpe P, et al. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging. Int J Nanomedicine [Internet]. 2016;11:3703–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27536107.

    Article  Google Scholar 

  79. Han L, Duan W, Li X, Wang C, Jin Z, Zhai Y, et al. Surface-enhanced resonance raman scattering-guided brain tumor surgery showing prognostic benefit in rat models. ACS Appl Mater Interfaces [Internet]. 2019;11(17):15241–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30896915.

    Article  CAS  Google Scholar 

  80. Neuschmelting V, Harmsen S, Beziere N, Lockau H, Hsu H-T, Huang R, et al. Dual-modality surface-enhanced resonance raman scattering and multispectral optoacoustic tomography nanoparticle approach for brain tumor delineation. Small [Internet]. 2018;14(23):e1800740. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29726109.

    Article  CAS  Google Scholar 

  81. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med [Internet]. 2012;18(5):829–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22504484.

    Article  CAS  Google Scholar 

  82. Borrebaeck CAK. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer [Internet]. 2017;17(3):199–204. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28154374.

    Article  CAS  Google Scholar 

  83. Chevillet JR, Lee I, Briggs HA, He Y, Wang K. Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules [Internet]. 2014;19(5):6080–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24830712.

    Article  CAS  Google Scholar 

  84. Li H, Meng QH, Noh H, Somaiah N, Torres KE, Xia X, et al. Cell-surface vimentin-positive macrophage-like circulating tumor cells as a novel biomarker of metastatic gastrointestinal stromal tumors. Oncoimmunology [Internet]. 2018;7(5):e1420450. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29721368.

    Article  Google Scholar 

  85. Wang D, Wu L, Liu X. Glycan markers as potential immunological targets in circulating tumor cells. Adv Exp Med Biol [Internet]. 2017;994:275–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28560680.

    Article  CAS  Google Scholar 

  86. Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein NH, et al. EpCAM-independent enrichment of circulating tumor cells in metastatic breast cancer. PLoS One [Internet]. 2015;10(12):e0144535. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26695635.

    Article  CAS  Google Scholar 

  87. Jia S, Zhang R, Li Z, Li J. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget [Internet]. 2017;8(33):55632–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28903450.

    Article  Google Scholar 

  88. Song S, Qin Y, He Y, Huang Q, Fan C, Chen H-Y. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev [Internet]. 2010;39(11):4234–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20871878.

    Article  CAS  Google Scholar 

  89. Chen X-J, Zhang X-Q, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology [Internet]. 2018;16(1):52. Available from: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-018-0378-6.

    Article  CAS  Google Scholar 

  90. Hull LC, Farrell D, Grodzinski P. Highlights of recent developments and trends in cancer nanotechnology research--view from NCI Alliance for Nanotechnology in Cancer. Biotechnol Adv [Internet]. 32(4):666–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23948249.

  91. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, et al. Noble metal nanoparticles for biosensing applications. Sensors (Basel) [Internet]. 2012;12(2):1657–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22438731.

    Article  CAS  Google Scholar 

  92. Sharifi M, Avadi MR, Attar F, Dashtestani F, Ghorchian H, Rezayat SM, et al. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron [Internet]. 2019;126:773–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30554099.

    Article  CAS  Google Scholar 

  93. Harun NA, Benning MJ, Horrocks BR, Fulton DA. Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles. Nanoscale [Internet]. 2013;5(9):3817–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23519376.

    Article  CAS  Google Scholar 

  94. Zhang H, Lv J, Jia Z. Efficient fluorescence resonance energy transfer between quantum dots and gold nanoparticles based on porous silicon photonic crystal for dna detection. Sensors [Internet]. 2017;17(5):1078. Available from: http://www.mdpi.com/1424-8220/17/5/1078.

    Article  CAS  Google Scholar 

  95. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Forensic Sci Int. 2011;331(6024):1559–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21436443.

    CAS  Google Scholar 

  96. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell [Internet]. 2006;127(4):679–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17110329.

    Article  CAS  Google Scholar 

  97. Lin M, Chen J-F, Lu Y-T, Zhang Y, Song J, Hou S, et al. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res [Internet]. 2014;47(10):2941–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25111636.

    Article  CAS  Google Scholar 

  98. Park S-M, Wong DJ, Ooi CC, Kurtz DM, Vermesh O, Aalipour A, et al. Molecular profiling of single circulating tumor cells from lung cancer patients. Proc Natl Acad Sci U S A [Internet]. 2016;113(52):E8379–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27956614.

    CAS  Google Scholar 

  99. Jan YJ, Chen J-F, Zhu Y, Lu Y-T, Chen SH, Chung H, et al. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev [Internet]. 2018;125:78–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29551650.

    Article  CAS  Google Scholar 

  100. Liang X-J, Chen C, Zhao Y, Wang PC. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol [Internet]. 2010;596:467–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19949937.

    Article  CAS  Google Scholar 

  101. Furness S, Glenny A-M, Worthington H V, Pavitt S, Oliver R, Clarkson JE, et al. Interventions for the treatment of oral cavity and oropharyngeal cancer: chemotherapy. Cochrane database Syst Rev [Internet]. 2010;(9):CD006386. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20824847.

  102. Zhao C-Y, Cheng R, Yang Z, Tian Z-M. Nanotechnology for cancer therapy based on chemotherapy. Molecules [Internet]. 2018;23(4). Available from: http://www.ncbi.nlm.nih.gov/pubmed/29617302.

  103. Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, et al. Controlled drug delivery systems for oral cancer treatment-current status and future perspectives. Pharmaceutics [Internet]. 2019;11(7). Available from: http://www.ncbi.nlm.nih.gov/pubmed/31262096.

  104. Marples B, Dhar S. Radiobiology and the renewed potential for nanoparticles. Int J Radiat Oncol Biol Phys [Internet]. 2017;98(3):489–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28581384.

    Article  Google Scholar 

  105. Zhou B, Wu Q, Wang M, Hoover A, Wang X, Zhou F, et al. Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment. Chem Eng J [Internet]. 2020;396. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32523422.

  106. Hou X, Tao Y, Pang Y, Li X, Jiang G, Liu Y. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int J cancer [Internet]. 2018;143(12):3050–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29981170.

    Article  CAS  Google Scholar 

  107. Buabeid MA, Arafa E-SA, Murtaza G. Emerging prospects for nanoparticle-enabled cancer immunotherapy. J Immunol Res [Internet]. 2020;2020:9624532. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32377541.

    Google Scholar 

  108. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer [Internet]. 2016;54:139–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26765102.

    Article  CAS  Google Scholar 

  109. Duan X, Chan C, Han W, Guo N, Weichselbaum RR, Lin W. Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat Commun [Internet]. 2019;10(1):1899. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31015397.

    Article  CAS  Google Scholar 

  110. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol [Internet]. 2015;33(9):941–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26348965.

    Article  CAS  Google Scholar 

  111. Zhang Y, Wang J, Xu M. A sensitive DNA biosensor fabricated with gold nanoparticles/poly (p-aminobenzoic acid)/carbon nanotubes modified electrode. Colloids Surf B Biointerfaces [Internet]. 2010;75(1):179–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19740633.

    Article  CAS  Google Scholar 

  112. Bonanni A, del Valle M. Use of nanomaterials for impedimetric DNA sensors: a review. Anal Chim Acta [Internet]. 2010;678(1):7–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20869498.

    Article  CAS  Google Scholar 

  113. Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, et al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine [Internet]. 2019;14:3111–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31118626.

    Article  Google Scholar 

  114. Babu A, Muralidharan R, Amreddy N, Mehta M, Munshi A, Ramesh R. Nanoparticles for siRNA-based gene silencing in tumor therapy. IEEE Trans Nanobioscience [Internet]. 2016;15(8):849–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28092499.

    Article  Google Scholar 

  115. Chaudhary V, Jangra S, Yadav NR. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnology [Internet]. 2018;16(1):40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29653577.

    Article  CAS  Google Scholar 

  116. Degliangeli F, Pompa PP, Fiammengo R. Nanotechnology-based strategies for the detection and quantification of microRNA. Chem Int. 2014;20(31):9476–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24989446.

    CAS  Google Scholar 

  117. Li W, Ruan K. MicroRNA detection by microarray. Anal Bioanal Chem [Internet]. 2009;394(4):1117–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19132354.

    Article  CAS  Google Scholar 

  118. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol [Internet]. 2005;205(2):275–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15641020.

    Article  CAS  Google Scholar 

  119. Tekchandani P, Kurmi BD, Paliwal SR. Nanomedicine to deal with cancer cell biology in multi-drug resistance. Mini Rev Med Chem [Internet]. 2017;17(18):1793–810. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26891930.

    CAS  Google Scholar 

  120. Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond) [Internet]. 2010;5(4):597–615. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20528455.

    Article  CAS  Google Scholar 

  121. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano [Internet]. 2010;4(8):4539–50. Available from: https://pubs.acs.org/doi/10.1021/nn100690m.

    Article  CAS  Google Scholar 

  122. Sun T-M, Du J-Z, Yao Y-D, Mao C-Q, Dou S, Huang S-Y, et al. Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano [Internet]. 2011;5(2):1483–94. Available from: https://pubs.acs.org/doi/10.1021/nn103349h.

    Article  CAS  Google Scholar 

  123. Rybinski B, Yun K. Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget [Internet]. 2016;7(44):72322–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27608848.

    Article  Google Scholar 

  124. Hu C-MJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol [Internet]. 2012;83(8):1104–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22285912.

    Article  CAS  Google Scholar 

  125. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res [Internet]. 2006;23(7):1574–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16786442.

    Article  CAS  Google Scholar 

  126. Tian Y, Jiang X, Chen X, Shao Z, Yang W. Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv Mater [Internet]. 2014;26(43):7393–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25238148.

    Article  CAS  Google Scholar 

  127. Kang J-W, Cho H-J, Lee HJ, Jin H-E, Maeng H-J. Polyethylene glycol-decorated doxorubicin/carboxymethyl chitosan/gold nanocomplex for reducing drug efflux in cancer cells and extending circulation in blood stream. Int J Biol Macromol [Internet]. 2019;125:61–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30521919.

    Article  CAS  Google Scholar 

  128. Gu Y-J, Cheng J, Man CW-Y, Wong W-T, Cheng SH. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine [Internet]. 2012;8(2):204–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21704592.

    Article  CAS  Google Scholar 

  129. Liu J, Zhao Y, Guo Q, Wang Z, Wang H, Yang Y, et al. TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials [Internet]. 2012;33(26):6155–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961212005765.

    Article  CAS  Google Scholar 

  130. Wen Z-M, Jie J, Zhang Y, Liu H, Peng L-P. A self-assembled polyjuglanin nanoparticle loaded with doxorubicin and anti-Kras siRNA for attenuating multidrug resistance in human lung cancer. Biochem Biophys Res Commun [Internet]. 2017;493(4):1430–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28958938.

    Article  CAS  Google Scholar 

  131. Sakurai Y. Development of siRNA delivery targeting the tumor microenvironment with a new functional device. Yakugaku Zasshi [Internet]. 2019;139(11):1357–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31685731.

    Article  CAS  Google Scholar 

  132. Chen Y, Bathula SR, Li J, Huang L. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. J Biol Chem [Internet]. 2010;285(29):22639–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20460382.

    Article  CAS  Google Scholar 

  133. Forastiere A, Koch W, Trotti A, Sidransky D. Head and neck cancer. N Engl J Med [Internet]. 2001;345(26):1890–900. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11756581.

    Article  CAS  Google Scholar 

  134. Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med [Internet]. 2008;359(11):1143–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18784104.

    Article  CAS  Google Scholar 

  135. Nör JE, Gutkind JS. Head and neck cancer in the new era of precision medicine. J Dent Res [Internet]. 2018;97(6):601–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29771196.

    Article  Google Scholar 

  136. Marur S, Forastiere AA. Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc [Internet]. 2008;83(4):489–501. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18380996.

    Article  Google Scholar 

  137. Prince VM, Papagerakis S, Prince ME. Oral cancer and cancer stem cells: relevance to oral cancer risk factors, premalignant lesions, and treatment. Curr Oral Heal Reports [Internet]. 2016;3(2):65–73. Available from: http://link.springer.com/10.1007/s40496-016-0081-3.

    Article  Google Scholar 

  138. Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol [Internet]. 2015;8(9):11884–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26617944.

    CAS  Google Scholar 

  139. Ramesh S, Tan CY, Hamdi M, Sopyan I, Teng WD. The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics. In: Du S, Leng J, Asundi AK, editors. Proc. of SPIE Vol. 6423, 64233A, (2007); 2007. p. 64233A-1–6.

    Google Scholar 

  140. Xie X, O’Neill W, Pan Q. Immunotherapy for head and neck cancer: the future of treatment? Expert Opin Biol Ther [Internet]. 2017;17(6):701–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28368668.

    Article  Google Scholar 

  141. Grégoire V, Lefebvre J-L, Licitra L, Felip E, EHNS-ESMO-ESTRO Guidelines Working Group. Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO Clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol [Internet]. 2010;21 Suppl 5:v184–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20555077.

    Article  Google Scholar 

  142. De Felice F, Musio D, Tombolini V. Osteoradionecrosis and intensity modulated radiation therapy: an overview. Crit Rev Oncol Hematol [Internet]. 2016;107:39–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27823650.

    Article  Google Scholar 

  143. De Felice F, de Vincentiis M, Luzzi V, Magliulo G, Tombolini M, Ruoppolo G, et al. Late radiation-associated dysphagia in head and neck cancer patients: evidence, research and management. Oral Oncol [Internet]. 2018;77:125–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29362118.

    Article  Google Scholar 

  144. Kasahara Y, Endo K, Ueno T, Ueno H, Moriyama-Kita M, Odani A, et al. Bone invasion-targeted chemotherapy with a novel anionic platinum complex (3Pt) for oral squamous cell carcinoma. Cancer Sci [Internet]. 2019;110(10):3288–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31348586.

    Article  CAS  Google Scholar 

  145. Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine [Internet]. 2014;9:3719–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25143724.

    Article  CAS  Google Scholar 

  146. Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro Junior JA, Chiavacci LA. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine [Internet]. 2017;12:4991–5011. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28761340.

    Article  CAS  Google Scholar 

  147. De Felice F, Cavallini C, Barlattani A, Tombolini M, Brugnoletti O, Tombolini V, et al. Nanotechnology in oral cavity carcinoma: recent trends and treatment opportunities. Nanomaterials [Internet]. 2019;9(11):1546. Available from: https://www.mdpi.com/2079-4991/9/11/1546.

    Article  CAS  Google Scholar 

  148. Moskovitz J, Moy J, Ferris RL. Immunotherapy for head and neck squamous cell carcinoma. Curr Oncol Rep [Internet]. 2018;20(2):22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29502288.

    Article  PubMed Central  CAS  Google Scholar 

  149. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med [Internet]. 2016;14:73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27151159.

    Article  CAS  Google Scholar 

  150. Rapidis AD, Wolf GT. Immunotherapy of head and neck cancer: current and future considerations. J Oncol [Internet]. 2009;2009:346345. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19680453.

    Google Scholar 

  151. Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg [Internet]. 1891;14(3):199–220. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17859590.

    Article  CAS  Google Scholar 

  152. Cheng C-T, Castro G, Liu C-H, Lau P. Advanced nanotechnology: an arsenal to enhance immunotherapy in fighting cancer. Clin Chim Acta [Internet]. 2019;492:12–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30711524.

    Article  CAS  Google Scholar 

  153. ClinicalTrials.gov U.S. National Library of Medicine. PARTNER: panitumumab added to regimen for treatment of head and neck cancer evaluation of response [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT00454779.

  154. ClinicalTrials.gov U.S. National Library of Medicine. Avelumab, cetuximab, and palbociclib in recurrent or metastatic head and neck squamous cell carcinoma [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03498378.

  155. Kumar A, Chakravarty N, Bhatnagar S, Chowdhary GS. Efficacy and safety of concurrent chemoradiotherapy with or without Nimotuzumab in unresectable locally advanced squamous cell carcinoma of head and neck: prospective comparative study - ESCORT-N study. South Asian J cancer [Internet]. 8(2):108–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31069191.

  156. Bastholt L, Specht L, Jensen K, Brun E, Loft A, Petersen J, et al. Phase I/II clinical and pharmacokinetic study evaluating a fully human monoclonal antibody against EGFr (HuMax-EGFr) in patients with advanced squamous cell carcinoma of the head and neck. Radiother Oncol [Internet]. 2007;85(1):24–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17602769.

    Article  CAS  Google Scholar 

  157. Machiels J-P, Subramanian S, Ruzsa A, Repassy G, Lifirenko I, Flygare A, et al. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomised phase 3 trial. Lancet Oncol [Internet]. 2011;12(4):333–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21377930.

    Article  CAS  Google Scholar 

  158. Mesía R, Henke M, Fortin A, Minn H, Yunes Ancona AC, Cmelak A, et al. Chemoradiotherapy with or without panitumumab in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-1): a randomised, controlled, open-label phase 2 trial. Lancet Oncol [Internet]. 2015;16(2):208–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25596660.

    Article  CAS  Google Scholar 

  159. Giralt J, Trigo J, Nuyts S, Ozsahin M, Skladowski K, Hatoum G, et al. Panitumumab plus radiotherapy versus chemoradiotherapy in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-2): a randomised, controlled, open-label phase 2 trial. Lancet Oncol [Internet]. 2015;16(2):221–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25596659.

    Article  CAS  Google Scholar 

  160. Rischin D, Spigel DR, Adkins D, Wein R, Arnold S, Singhal N, et al. PRISM: phase 2 trial with panitumumab monotherapy as second-line treatment in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck [Internet]. 2016;38 Suppl 1:E1756–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26681429.

    Article  Google Scholar 

  161. Vermorken JB, Stöhlmacher-Williams J, Davidenko I, Licitra L, Winquist E, Villanueva C, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol [Internet]. 2013;14(8):697–710. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23746666.

    Article  CAS  Google Scholar 

  162. Kozakiewicz P, Grzybowska-Szatkowska L. Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma. Oncol Lett [Internet]. 2018;15(5):7497–505. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29725456.

    Google Scholar 

  163. Chiu JW, Chan K, Chen EX, Siu LL, Abdul Razak AR. Pharmacokinetic assessment of dacomitinib (pan-HER tyrosine kinase inhibitor) in patients with locally advanced head and neck squamous cell carcinoma (LA SCCHN) following administration through a gastrostomy feeding tube (GT). Invest New Drugs [Internet]. 2015;33(4):895–900. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25937431.

    Article  CAS  Google Scholar 

  164. Elicin O, Ozsahin M. Current role of dacomitinib in head and neck cancer. Expert Opin Investig Drugs [Internet]. 2016;25(6):735–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27070370.

    Article  CAS  Google Scholar 

  165. Psyrri A, Rampias T, Vermorken JB. The current and future impact of human papillomavirus on treatment of squamous cell carcinoma of the head and neck. Ann Oncol Off J Eur Soc Med Oncol [Internet]. 2014;25(11):2101–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25057165.

    Article  CAS  Google Scholar 

  166. Abdul Razak AR, Soulières D, Laurie SA, Hotte SJ, Singh S, Winquist E, et al. A phase II trial of dacomitinib, an oral pan-human EGF receptor (HER) inhibitor, as first-line treatment in recurrent and/or metastatic squamous-cell carcinoma of the head and neck. Ann Oncol [Internet]. 2013;24(3):761–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923753419371315.

    Article  CAS  Google Scholar 

  167. Machiels J-PH, Haddad RI, Fayette J, Licitra LF, Tahara M, Vermorken JB, et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomised phase 3 trial. Lancet Oncol [Internet]. 2015;16(5):583–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25892145.

    Article  CAS  Google Scholar 

  168. Clement PM, Gauler T, Machiels JP, Haddad RI, Fayette J, Licitra LF, et al. Afatinib versus methotrexate in older patients with second-line recurrent and/or metastatic head and neck squamous cell carcinoma: subgroup analysis of the LUX-Head & Neck 1 trial. Ann Oncol Off J Eur Soc Med Oncol [Internet]. 2016;27(8):1585–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27084954.

    Article  CAS  Google Scholar 

  169. Cohen EEW, Licitra LF, Burtness B, Fayette J, Gauler T, Clement PM, et al. Biomarkers predict enhanced clinical outcomes with afatinib versus methotrexate in patients with second-line recurrent and/or metastatic head and neck cancer. Ann Oncol Off J Eur Soc Med Oncol [Internet]. 2017;28(10):2526–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28961833.

    Article  CAS  Google Scholar 

  170. Harrington K, Temam S, Mehanna H, D’Cruz A, Jain M, D’Onofrio I, et al. Postoperative adjuvant lapatinib and concurrent chemoradiotherapy followed by maintenance lapatinib monotherapy in high-risk patients with resected squamous cell carcinoma of the head and neck: a phase III, randomized, double-blind, placebo-controlled study. J Clin Oncol [Internet]. 2015;33(35):4202–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26527790.

    Article  CAS  Google Scholar 

  171. Agulnik M, da Cunha SG, Hedley D, Nicklee T, Dos Reis PP, Ho J, et al. Predictive and pharmacodynamic biomarker studies in tumor and skin tissue samples of patients with recurrent or metastatic squamous cell carcinoma of the head and neck treated with erlotinib. J Clin Oncol [Internet]. 2007;25(16):2184–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17538163.

    Article  CAS  Google Scholar 

  172. Hainsworth JD, Spigel DR, Burris HA, Markus TM, Shipley D, Kuzur M, et al. Neoadjuvant chemotherapy/gefitinib followed by concurrent chemotherapy/radiation therapy/gefitinib for patients with locally advanced squamous carcinoma of the head and neck. Cancer [Internet]. 2009;115(10):2138–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19288572.

    Article  CAS  Google Scholar 

  173. Razak ARA, Ahn M-J, Yen C-J, Solomon BJ, Lee S-H, Wang H-M, et al. Phase lb/ll study of the PI3Kα inhibitor BYL719 in combination with cetuximab in recurrent/metastatic squamous cell cancer of the head and neck (SCCHN). J Clin Oncol [Internet]. 2014;32(15_suppl):6044. Available from: http://ascopubs.org/doi/10.1200/jco.2014.32.15_suppl.6044.

    Article  Google Scholar 

  174. ClinicalTrials.gov U.S. National Library of Medicine. EACH: evaluating avelumab in combination with cetuximab in head and neck cancer (EACH) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03494322.

  175. ClinicalTrials.gov U.S. National Library of Medicine. Durvalumab, cetuximab and radiotherapy in head neck cancer (DUCRO-HN) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03051906.

  176. ClinicalTrials.gov U.S. National Library of Medicine. Durvalumab with or without tremelimumab in resectable locally advanced squamous cell carcinoma of the oral cavity (DUTRELASCO) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03784066.

  177. ClinicalTrials.gov U.S. National Library of Medicine. A study of atezolizumab (anti−Pd-L1 antibody) as adjuvant therapy after definitive local therapy in patients with high-risk locally advanced squamous cell carcinoma of the head and neck [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03452137.

  178. ClinicalTrials.gov U.S. National Library of Medicine. Atezolizumab and bevacizumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (ATHENA) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03818061.

  179. Seiwert TY, Weiss J, Baxi SS, Ahn M-J, Fayette J, Gillison ML, et al. A phase 3, randomized, open-label study of first-line durvalumab (MEDI4736) ± tremelimumab versus standard of care (SoC; EXTREME regimen) in recurrent/metastatic (R/M) SCCHN: KESTREL. J Clin Oncol [Internet]. 2016;34(15_suppl):TPS6101. Available from: http://ascopubs.org/doi/10.1200/JCO.2016.34.15_suppl.TPS6101.

    Article  Google Scholar 

  180. Bonomo P, Desideri I, Loi M, Mangoni M, Sottili M, Marrazzo L, et al. Anti PD-L1 DUrvalumab combined with Cetuximab and RadiOtherapy in locally advanced squamous cell carcinoma of the head and neck: a phase I/II study (DUCRO). Clin Transl Radiat Oncol [Internet]. 2018;9:42–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29594250.

    Article  Google Scholar 

  181. Peters S, Gettinger S, Johnson ML, Jänne PA, Garassino MC, Christoph D, et al. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J Clin Oncol [Internet]. 2017;35(24):2781–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28609226.

    Article  CAS  Google Scholar 

  182. ClinicalTrials.gov U.S. National Library of Medicine. A study to evaluate immune biomarker modulation in response to VTX-2337 in combination with an anti- PD-1 inhibitor in head and neck cancer [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03906526.

  183. Moreno-Gonzalez A, Olson JM, Klinghoffer RA. Predicting responses to chemotherapy in the context that matters - the patient. Mol Cell Oncol [Internet]. 2016;3(1):e1057315. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27308571.

    Article  Google Scholar 

  184. Klinghoffer RA, Bahrami SB, Hatton BA, Frazier JP, Moreno-Gonzalez A, Strand AD, et al. A technology platform to assess multiple cancer agents simultaneously within a patient’s tumor. Sci Transl Med [Internet]. 2015;7(284):284ra58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25904742.

    Google Scholar 

  185. Dey J, Kerwin WS, Grenley MO, Casalini JR, Tretyak I, Ditzler SH, et al. A platform for rapid, quantitative assessment of multiple drug combinations simultaneously in solid tumors in vivo. PLoS One [Internet]. 2016;11(6):e0158617. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27359113.

    Article  CAS  Google Scholar 

  186. Frazier JP, Bertout JA, Kerwin WS, Moreno-Gonzalez A, Casalini JR, Grenley MO, et al. Multidrug analyses in patients distinguish efficacious cancer agents based on both tumor cell killing and immunomodulation. Cancer Res [Internet]. 2017;77(11):2869–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28364003.

    Article  CAS  Google Scholar 

  187. Dietsch GN, Lu H, Yang Y, Morishima C, Chow LQ, Disis ML, et al. Coordinated activation of toll-like Receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity. PLoS One [Internet]. 2016;11(2):e0148764. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26928328.

    Article  CAS  Google Scholar 

  188. Kong A, Good J, Kirkham A, Savage J, Mant R, Llewellyn L, et al. Phase I trial of WEE1 inhibition with chemotherapy and radiotherapy as adjuvant treatment, and a window of opportunity trial with cisplatin in patients with head and neck cancer: the WISTERIA trial protocol. BMJ Open [Internet]. 2020;10(3):e033009. Available from: http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2019-033009.

    Article  Google Scholar 

  189. ClinicalTrials.gov U.S. National Library of Medicine. WEE1 inhibitor with cisplatin and radiotherapy: a trial in head and neck cancer (WISTERIA) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03028766.

  190. ClinicalTrials.gov U.S. National Library of Medicine. Abemaciclib + nivolumab in patients with recurrent/metastatic head and neck squamous cell carcinoma that progressed or recurred within six months after platinum-based chemotherapy [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03655444.

  191. ClinicalTrials.gov U.S. National Library of Medicine. Clinical trial of abemaciclib in combination with pembrolizumab in patients with metastatic or recurrent head and neck cancer [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03938337.

  192. ClinicalTrials.gov U.S. National Library of Medicine. TPST-1120 as monotherapy and in combination with nivolumab in subjects with advanced cancers [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03829436.

  193. ClinicalTrials.gov U.S. National Library of Medicin. Sitravatinib (MGCD516) and nivolumab in oral cavity cancer window opportunity study (SNOW) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03575598.

  194. Kim Y, Lee SJ, Lee JY, Lee S-H, Sun J-M, Park K, et al. Clinical trial of nintedanib in patients with recurrent or metastatic salivary gland cancer of the head and neck: a multicenter phase 2 study (Korean Cancer study group HN14-01). Cancer [Internet]. 2017;123(11):1958–64. Available from: http://doi.wiley.com/10.1002/cncr.30537.

    Article  CAS  Google Scholar 

  195. ClinicalTrials.gov U.S. National Library of Medicine. Trial of BIBF1120 (Nintedanib) in patients with recurrent or metastatic salivary gland cancer of the head and neck [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02558387.

  196. ClinicalTrials.gov U.S. National Library of Medicine. Phase III open label study of MEDI 4736 With/without tremelimumab versus standard of care (SOC) in recurrent/metastatic head and neck cancer (KESTREL) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02551159.

  197. Swanson MS, Sinha UK. Rationale for combined blockade of PD-1 and CTLA-4 in advanced head and neck squamous cell cancer—review of current data. Oral Oncol [Internet]. 2015;51(1):12–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25459157.

    Article  CAS  Google Scholar 

  198. Wang D, Fei B, Halig LV, Qin X, Hu Z, Xu H, et al. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano [Internet]. 2014;8(7):6620–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24923902.

    Article  CAS  Google Scholar 

  199. ClinicalTrials.gov U.S. National Library of Medicine. A phase 1, bioavailability study of relatlimab in combination with nivolumab [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT04112498.

  200. ClinicalTrials.gov U.S. National Library of Medicine. Study of safety and tolerability of nivolumab treatment alone or in combination with relatlimab or ipilimumab in head and neck cancer [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT04080804.

  201. Maruhashi T, Okazaki I-M, Sugiura D, Takahashi S, Maeda TK, Shimizu K, et al. LAG-3 inhibits the activation of CD4+ T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nat Immunol [Internet]. 2018;19(12):1415–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30349037.

    Article  CAS  Google Scholar 

  202. ClinicalTrials.gov U.S. National Library of Medicine. Study to assess MEDI4736 with either AZD9150 or AZD5069 in advanced solid tumors & relapsed metastatic squamous cell carcinoma of head & neck [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02499328.

  203. Cohen EEW, Harrington KJ, Hong DS, Mesia R, Brana I, Perez Segura P, et al. A phase Ib/II study (SCORES) of durvalumab (D) plus danvatirsen (DAN; AZD9150) or AZD5069 (CX2i) in advanced solid malignancies and recurrent/metastatic head and neck squamous cell carcinoma (RM-HNSCC): Updated results. Ann Oncol [Internet]. 2018;29:viii372. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092375341949501X.

    Article  Google Scholar 

  204. Adachi M, Cui C, Dodge CT, Bhayani MK, Lai SY. Targeting STAT3 inhibits growth and enhances radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol [Internet]. 2012;48(12):1220–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22770899.

    Article  CAS  Google Scholar 

  205. Chan L-P, Wang L-F, Chiang F-Y, Lee K-W, Kuo P-L, Liang C-H. IL-8 promotes HNSCC progression on CXCR1/2-meidated NOD1/RIP2 signaling pathway. Oncotarget [Internet]. 2016;7(38):61820–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27557518.

    Article  Google Scholar 

  206. Forster MD, Devlin M-J. Immune checkpoint inhibition in head and neck cancer. Front Oncol [Internet]. 2018;8:310. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30211111.

    Article  Google Scholar 

  207. ClinicalTrials.gov U.S, National Library of Medicine. A study of epacadostat + pembrolizumab in head and neck cancer patients, who failed prior PD-1/PD-L1 therapy.

    Google Scholar 

  208. ClinicalTrials.gov U.S. National Library of Medicine. Pembrolizumab plus epacadostat, pembrolizumab monotherapy, and the EXTREME regimen in recurrent or metastatic head and neck squamous cell carcinoma (KEYNOTE-669/ECHO-304) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03358472.

  209. Colevas AD, Yom SS, Pfister DG, Spencer S, Adelstein D, Adkins D, et al. NCCN guidelines insights: head and neck cancers, version 1.2018. J Natl Compr Canc Netw [Internet]. 2018;16(5):479–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29752322.

    Article  Google Scholar 

  210. Lubek JE. Head and neck cancer research and support foundations. Oral Maxillofac Surg Clin North Am [Internet]. 2018;30(4):459–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30266190.

    Article  Google Scholar 

  211. Khalil DN, Budhu S, Gasmi B, Zappasodi R, Hirschhorn-Cymerman D, Plitt T, et al. The new era of cancer immunotherapy: manipulating T-cell activity to overcome malignancy. Adv Cancer Res [Internet]. 2015;128:1–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26216629.

    Article  CAS  Google Scholar 

  212. Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology [Internet]. 2012;1(8):1223–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23243584.

    Article  Google Scholar 

  213. Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell [Internet]. 2016;167(6):1540–1554.e12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27912061.

    Article  CAS  Google Scholar 

  214. Leventakos K, Mansfield AS. Advances in the treatment of non-small cell lung cancer: focus on nivolumab, pembrolizumab, and atezolizumab. BioDrugs [Internet]. 2016;30(5):397–405. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27411930.

    Article  CAS  Google Scholar 

  215. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer [Internet]. 2018;6(1):8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29357948.

    Article  Google Scholar 

  216. Ferris RL. Immunology and immunotherapy of head and neck cancer. J Clin Oncol [Internet]. 2015;33(29):3293–304. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26351330.

    Article  CAS  PubMed Central  Google Scholar 

  217. Ling DC, Bakkenist CJ, Ferris RL, Clump DA. Role of immunotherapy in head and neck cancer. Semin Radiat Oncol [Internet]. 2018;28(1):12–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29173750.

    Article  Google Scholar 

  218. Sim F, Leidner R, Bell RB. Immunotherapy for head and neck cancer. Oral Maxillofac Surg Clin North Am [Internet]. 2019;31(1):85–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30449528.

    Article  Google Scholar 

  219. Allison JP. Immune checkpoint blockade in cancer therapy: The 2015 Lasker-DeBakey Clinical Medical Research Award. JAMA [Internet]. 2015;314(11):1113–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26348357.

    Article  CAS  Google Scholar 

  220. Kerr WG, Chisholm JD. The next generation of immunotherapy for cancer: small molecules could make Big Waves. J Immunol [Internet]. 2019;202(1):11–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30587569.

    Article  CAS  Google Scholar 

  221. Cristina V, Herrera-Gómez RG, Szturz P, Espeli V, Siano M. Immunotherapies and future combination strategies for head and neck squamous cell carcinoma. Int J Mol Sci [Internet]. 2019;20(21):5399. Available from: https://www.mdpi.com/1422-0067/20/21/5399.

    Article  CAS  Google Scholar 

  222. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med [Internet]. 2013;369(2):122–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23724867

    Article  CAS  Google Scholar 

  223. Ferris RL, Haddad R, Even C, Tahara M, Dvorkin M, Ciuleanu TE, et al. Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Ann Oncol Off J Eur Soc Med Oncol [Internet]. 2020;31(7):942–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32294530.

    Article  CAS  Google Scholar 

  224. ClinicalTrials.gov U.S. National Library of Medicine. Study of MEDI4736 Monotherapy and in Combination With Tremelimumab Versus Standard of Care Therapy in Patients With Head and Neck Cancer (EAGLE) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02369874.

  225. ClinicalTrials.gov U.S. National Library of Medicine. Study of Nivolumab in Combination With Ipilimumab Versus Nivolumab in Combination With Ipilimumab Placebo in Patients With Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (CheckMate 714) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02823574.

  226. ClinicalTrials.gov U.S. National Library of Medicine. Study of Nivolumab in Combination With Ipilimumab Compared to the Standard of Care (Extreme Regimen) as First Line Treatment in Patients With Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (CheckMate 651) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02741570.

  227. Cristina V, Herrera-Gómez RG, Szturz P, Espeli V, Siano M. Immunotherapies and Future Combination Strategies for Head and Neck Squamous Cell Carcinoma. Int J Mol Sci [Internet]. 2019;20(21):PMC6862353. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31671550.

    Google Scholar 

  228. Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother cancer [Internet]. 2016;4:51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27660705.

    Article  Google Scholar 

  229. Demaria S, Formenti SC. Can abscopal effects of local radiotherapy be predicted by modeling T cell trafficking? J Immunother cancer [Internet]. 2016;4:29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27190630.

    Article  Google Scholar 

  230. Sharabi AB, Lim M, DeWeese TL, Drake CG. Radiation and checkpoint blockade immunotherapy: radiosensitisation and potential mechanisms of synergy. Lancet Oncol [Internet]. 2015;16(13):e498–509. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26433823.

    Article  Google Scholar 

  231. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res [Internet]. 2005;11(2 Pt 1):728–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15701862.

    Article  CAS  Google Scholar 

  232. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest [Internet]. 2014;124(2):687–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24382348.

    Article  CAS  Google Scholar 

  233. Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res [Internet]. 2015;3(4):345–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25527358.

    Article  CAS  Google Scholar 

  234. ClinicalTrials.gov U.S. National Library of Medicine. Targeting PD-1 therapy resistance with focused high or high and low dose radiation in SCCHN. Available from: https://clinicaltrials.gov/ct2/show/NCT03085719.

  235. ClinicalTrials.gov U.S. National Library of Medicine. Pembrolizumab in combination with cisplatin and intensity modulated radiotherapy (IMRT) in head and neck cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02777385.

  236. ClinicalTrials.gov U.S. National Library of Medicine. Phase II trial of adjuvant cisplatin and radiation with pembrolizumab in resected head and neck squamous cell carcinoma. Available from: https://clinicaltrials.gov/ct2/show/NCT02641093.

  237. ClinicalTrials.gov U.S. National Library of Medicine. Study of pembrolizumab (MK-3475) or placebo with chemoradiation in participants with locally advanced head and neck squamous cell carcinoma (MK-3475-412/KEYNOTE-412) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03040999.

  238. ClinicalTrials.gov U.S. National Library of Medicine. Study to compare avelumab in combination with standard of care chemoradiotherapy (SoC CRT) versus SoC CRT for definitive treatment in patients with locally advanced squamous cell carcinoma of the head and neck (JAVELIN HEAD AND NECK 100) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02952586.

  239. Machiels J-P, Tao Y, Burtness B, Tahara M, Licitra L, Rischin D, et al. Pembrolizumab given concomitantly with chemoradiation and as maintenance therapy for locally advanced head and neck squamous cell carcinoma: KEYNOTE-412. Future Oncol [Internet]. 2020;16(18):1235–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32490686.

    Article  CAS  Google Scholar 

  240. Powell SF, Gitau MM, Sumey CJ, Reynolds JT, Lohr M, McGraw S, et al. Safety of pembrolizumab with chemoradiation (CRT) in locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN). J Clin Oncol [Internet]. 2017;35(15_suppl):6011. Available from: http://ascopubs.org/doi/10.1200/JCO.2017.35.15_suppl.6011.

    Article  Google Scholar 

  241. Machiels J-P, Tao Y, Burtness B, Tahara M, Licitra L, Rischin D, et al. Pembrolizumab given concomitantly with chemoradiation and as maintenance therapy for locally advanced head and neck squamous cell carcinoma: KEYNOTE-412. Futur Oncol [Internet]. 2020;16(18):1235–43. Available from: https://www.futuremedicine.com/doi/10.2217/fon-2020-0184.

    Article  CAS  Google Scholar 

  242. ClinicalTrials.gov U.S. National Library of Medicine. Pembrolizumab in Combination With CRT for LA-SCCHN. Available from: https://clinicaltrials.gov/ct2/show/NCT02586207.

  243. Maeda H, Tominaga K, Iwanaga K, Nagao F, Habu M, Tsujisawa T, et al. Targeted drug delivery system for oral cancer therapy using sonoporation. J Oral Pathol Med [Internet]. 2009;38(7):572–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19549112.

    Article  CAS  Google Scholar 

  244. Hirabayashi F, Iwanaga K, Okinaga T, Takahashi O, Ariyoshi W, Suzuki R, et al. Epidermal growth factor receptor-targeted sonoporation with microbubbles enhances therapeutic efficacy in a squamous cell carcinoma model. PLoS One [Internet]. 2017;12(9):e0185293. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28938010.

    Article  CAS  Google Scholar 

  245. Kerr WG, Chisholm JD. The next generation of immunotherapy for cancer: small molecules could make big waves. J Immunol [Internet]. 2019;202(1):11–9. Available from: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1800991.

    Article  CAS  Google Scholar 

  246. Zhu H-F, Li Y. Small-Molecule Targets in tumor Immunotherapy. Nat Products Bioprospect [Internet]. 2018;8(4):297–301. Available from: http://link.springer.com/10.1007/s13659-018-0177-7.

    Article  CAS  Google Scholar 

  247. Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov [Internet]. 2015;14(9):603–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26228631.

    Article  CAS  Google Scholar 

  248. Weinmann H. Cancer immunotherapy: selected targets and small-molecule modulators. ChemMedChem [Internet]. 2016; 11(5):450–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26836578.

  249. Skalniak L, Zak KM, Guzik K, Magiera K, Musielak B, Pachota M, et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget [Internet]. 2017;8(42):72167–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29069777.

  250. ClinicalTrials.gov U.S. National Library of Medicine. A study of CA-170 (Oral PD-L1, PD-L2 and VISTA checkpoint antagonist) in patients with advanced tumors and lymphomas [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02812875

  251. Huck BR, Kötzner L, Urbahns K. Small molecules drive big improvements in immuno-oncology therapies. Angew Chemie Int Ed [Internet]. 2018;57(16):4412–28. Available from: http://doi.wiley.com/10.1002/anie.201707816.

    Article  CAS  Google Scholar 

  252. ClinicalTrials.gov U.S. National Library of Medicine. Topical or ablative treatment in preventing anal cancer in patients with HIV and Anal High-Grade Squamous Intraepithelial Lesions (ANCHOR) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02135419.

  253. ClinicalTrials.gov U.S. National Library of Medicine. Imiquimod, Fluorouracil, or Observation in Treating HIV-Positive Patients With High-Grade Anal Squamous Skin Lesions [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02059499.

  254. ClinicalTrials.gov U.S. National Library of Medicine. Imiquimod and Pembrolizumab in Treating Patients With Stage IIIB-IV Melanoma [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03276832.

  255. Bubna AK. Imiquimod - its role in the treatment of cutaneous malignancies. Indian J Pharmacol [Internet]. 2015;47(4):354–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26288465.

  256. ClinicalTrials.gov U.S. National Library of Medicine. Topical Resiquimod for the Treatment of Early Stage Cutaneous T Cell Lymphoma (CTCL) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01676831.

  257. ClinicalTrials.gov U.S. National Library of Medicine. Study of Immune Response Modifier in the Treatment of Hematologic Malignancies [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT00276159.

  258. ClinicalTrials.gov U.S. National Library of Medicine. Chemotherapy Plus Cetuximab in Combination With VTX-2337 in Patients With Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01836029.

  259. ClinicalTrials.gov U.S. National Library of Medicine. Safety and Efficacy of MIW815 (ADU-S100) +/− Ipilimumab in Patients With Advanced/Metastatic Solid Tumors or Lymphomas [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02675439.

  260. Weiss JM, Guérin M V, Regnier F, Renault G, Galy-Fauroux I, Vimeux L, et al. The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression. Oncoimmunology [Internet]. 2017;6(10):e1346765. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29123960.

  261. Sanchez Alberti A, Bivona AE, Cerny N, Schulze K, Weißmann S, Ebensen T, et al. Engineered trivalent immunogen adjuvanted with a STING agonist confers protection against Trypanosoma cruzi infection. NPJ vaccines [Internet]. 2017;2:9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29263868.

  262. ClinicalTrials.gov U.S. National Library of Medicine. Study of MK-1454 Alone or in Combination With Pembrolizumab (MK-3475) in Participants With Advanced/Metastatic Solid Tumors or Lymphomas (MK-1454-001) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03010176.

  263. Shi X, Song S, Ding Z, Fan B, Xu T, Huang W. Improving the Solubility and Dissolution of Ibrutinib by Preparing Solvates. J Pharm Innov [Internet]. 2019 Aug 27; Available from: http://link.springer.com/10.1007/s12247-019-09402-7.

  264. Kim ES, Dhillon S. Ibrutinib: a review of its use in patients with mantle cell lymphoma or chronic lymphocytic leukaemia. Drugs [Internet]. 2015;75(7):769–76. Available from: http://link.springer.com/10.1007/s40265-015-0380-3.

    Article  CAS  Google Scholar 

  265. Allegra A, Pioggia G, Tonacci A, Musolino C, Gangemi S. Cancer and SARS-CoV-2 infection: diagnostic and therapeutic challenges. cancers (Basel) [Internet]. 2020; 12(6):1581. Available from: https://www.mdpi.com/2072-6694/12/6/1581.

  266. Treon SP, Castillo JJ, Skarbnik AP, Soumerai JD, Ghobrial IM, Guerrera ML, et al. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19–infected patients. Blood [Internet]. 2020;135(21):1912–5. Available from: https://ashpublications.org/blood/article/135/21/1912/454437/The-BTK-inhibitor-ibrutinib-may-protect-against.

    Article  CAS  Google Scholar 

  267. Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev [Internet]. 2014;34(4):795–824. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24302498.

  268. Brooks R, Fuhler GM, Iyer S, Smith MJ, Park M-Y, Paraiso KHT, et al. SHIP1 inhibition increases immunoregulatory capacity and triggers apoptosis of hematopoietic cancer cells. J Immunol [Internet]. 2010;184(7):3582–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20200281.

  269. Kong D, Zhang Z. PI3K/AKT Inhibitors as Sensitizing Agents for Cancer Chemotherapy. In: Protein Kinase Inhibitors as Sensitizing Agents for Chemotherapy [Internet]. Elsevier; 2019. p. 187–205.. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128164358000122.

  270. Awan FT, Kharfan-Dabaja MA. Hematopoietic Cell Transplantation for Chronic Lymphocytic Leukemia. In: Hematopoietic Cell Transplantation for Malignant Conditions [Internet]. Elsevier; 2019. p. 185–190.. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323568029000122.

  271. Cheah CY, Fowler NH. Idelalisib in the management of lymphoma. Blood [Internet]. 2016;128(3):331–6. Available from: https://ashpublications.org/blood/article/128/3/331/35546/Idelalisib-in-the-management-of-lymphoma.

    Article  CAS  Google Scholar 

  272. ClinicalTrials.gov U.S. National Library of Medicine. A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of IPI-549 [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02637531.

  273. ClinicalTrials.gov U.S. National Library of Medicine. A Study to Assess Pharmacokinetics of Preladenant in Participants With Chronic Hepatic Impairment (P06513). Available from: https://clinicaltrials.gov/ct2/show/NCT01465412.

  274. Pinna A. Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs [Internet]. 2014;28(5):455–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24687255.

  275. Shin S-H, Park M-H, Byeon J-J, Lee B, Park Y, Kim N, et al. Analysis of vipadenant and its in vitro and in vivo Metabolites via liquid chromatography-quadrupole-time-of-flight mass spectrometry. Pharmaceutics [Internet]. 2018;10(4):260.. Available from: http://www.mdpi.com/1999-4923/10/4/260.

  276. ClinicalTrials.gov U.S. National Library of Medicine. A Study to Assess Pharmacokinetics of Preladenant in Participants With Chronic Hepatic Impairment (P06513) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01465412.

  277. ClinicalTrials.gov U.S. National Library of Medicine. Study of Preladenant (MK-3814) Alone and With Pembrolizumab (MK-3475) in Participants With Advanced Solid Tumors (MK-3814A-062) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03099161.

  278. ClinicalTrials.gov U.S. National Library of Medicine. Oleclumab (MEDI9447) EGFRm NSCLC Novel Combination Study [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03381274.

  279. Yingling JM, McMillen WT, Yan L, Huang H, Sawyer JS, Graff J, et al. Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget [Internet]. 2018;9(6):6659–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29467918.

  280. ClinicalTrials.gov U.S. National Library of Medicine. A Dose-finding Study of MK-8628 in Participants With Recurrent Glioblastoma Multiforme (MK-8628-002) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02296476.

  281. ClinicalTrials.gov U.S. National Library of Medicine. Study of CPI-0610 in Patients With Malignant Peripheral Nerve Sheath Tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02986919.

  282. ClinicalTrials.gov U.S. National Library of Medicine. Study of IDO Inhibitor and Temozolomide for Adult Patients With Primary Malignant Brain Tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02052648.

  283. ClinicalTrials.gov U.S. National Library of Medicine. Pediatric Trial of Indoximod With Chemotherapy and Radiation for Relapsed Brain Tumors or Newly Diagnosed DIPG [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT04049669.

  284. ClinicalTrials.gov U.S. National Library of Medicine. 1-Methyl-D-Tryptophan and Docetaxel in Treating Patients With Metastatic Solid Tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01191216.

  285. ClinicalTrials.gov U.S. National Library of Medicine. Study of the IDO Pathway Inhibitor, Indoximod, and Temozolomide for Pediatric Patients With Progressive Primary Malignant Brain Tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02502708.

  286. Opitz CA, Litzenburger UM, Opitz U, Sahm F, Ochs K, Lutz C, et al. The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One [Internet]. 2011;6(5):e19823. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21625531.

  287. ClinicalTrials.gov U.S. National Library of Medicine. Study of IDO Inhibitor in Combination With Checkpoint Inhibitors for Adult Patients With Metastatic Melanoma [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02073123.

  288. Yue EW, Sparks R, Polam P, Modi D, Douty B, Wayland B, et al. INCB24360 (Epacadostat), a highly potent and selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med Chem Lett [Internet]. 2017;8(5):486–91. Available from: https://pubs.acs.org/doi/10.1021/acsmedchemlett.6b00391.

    Article  CAS  Google Scholar 

  289. Röhrig UF, Reynaud A, Majjigapu SR, Vogel P, Pojer F, Zoete V. Inhibition mechanisms of indoleamine 2,3-dioxygenase 1 (IDO1). J Med Chem [Internet]. 2019;62(19):8784–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31525930.

  290. Röhrig UF, Zoete V, Michielin O. The binding mode of N-hydroxyamidines to indoleamine 2,3-dioxygenase 1 (IDO1). biochemistry [Internet]. 2017;56(33):4323–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28731684.

  291. ClinicalTrials.gov U.S. National Library of Medicine. A Study of GDC-0919 and Atezolizumab Combination Treatment in Participants With Locally Advanced or Metastatic Solid Tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02471846.

  292. ClinicalTrials.gov U.S. National Library of Medicine. Indoleamine 2,3-Dioxygenase (IDO) Inhibitor in Advanced Solid Tumors. Available from: https://clinicaltrials.gov/ct2/show/NCT02048709.

  293. Nayak-Kapoor A, Hao Z, Sadek R, Dobbins R, Marshall L, Vahanian NN, et al. Phase Ia study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. J Immunother Cancer [Internet]. 2018 ;6(1):61. Available from: http://jitc.bmj.com/lookup/doi/10.1186/s40425-018-0351-9.

  294. ClinicalTrials.gov U.S. National Library of Medicine. A Study of Chemo Only Versus Chemo Plus Nivo With or Without BMS-986205, Followed by Post- Surgery Therapy With Nivo or Nivo and BMS-986205 in Patients With MIBC [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03661320.

  295. Crosignani S, Bingham P, Bottemanne P, Cannelle H, Cauwenberghs S, Cordonnier M, et al. Discovery of a novel and selective Indoleamine 2,3-dioxygenase (IDO-1) inhibitor 3-(5-Fluoro-1H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and its characterization as a potential Clinical candidate. J Med Chem [Internet]. 2017;60(23):9617–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29111717.

  296. Gomes B, Driessens G, Bartlett D, Cai D, Cauwenberghs S, Crosignani S, et al. Characterization of the selective Indoleamine 2,3-Dioxygenase-1 (IDO1) catalytic inhibitor EOS200271/PF-06840003 supports IDO1 as a critical resistance mechanism to PD-(L)1 Blockade Therapy. Mol Cancer Ther [Internet]. 2018;17(12):2530–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30232146.

  297. Karavasili C, Andreadis DA, Katsamenis OL, Panteris E, Anastasiadou P, Kakazanis Z, et al. Synergistic antitumor potency of a self-assembling peptide hydrogel for the local co-delivery of doxorubicin and curcumin in the treatment of head and neck cancer. Mol Pharm [Internet]. 2019;16(6):2326–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31026168.

  298. Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci [Internet]. 2011;14(1):67. Available from: https://journals.library.ualberta.ca/jpps/index.php/JPPS/article/view/9199.

  299. Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv [Internet]. 2015;12(9):1459–73. Available from: http://www.tandfonline.com/doi/full/10.1517/17425247.2015.1018175.

    Article  CAS  Google Scholar 

  300. Pignon J-P, le Maître A, Maillard E, Bourhis J, MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol [Internet]. 2009;92(1):4–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19446902.

  301. Hanemaaijer SH, Kok IC, Fehrmann RSN, van der Vegt B, Gietema JA, Plaat BEC, et al. Comparison of carboplatin with 5-fluorouracil vs. cisplatin as concomitant chemoradiotherapy for locally advanced head and neck squamous cell carcinoma. Front Oncol [Internet]. 2020;10:761. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32582534.

  302. Puyo S, Montaudon D, Pourquier P. From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol [Internet]. 2014;89(1):43–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1040842813001571.

    Article  Google Scholar 

  303. Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol [Internet] 2014;740:364–378. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014299914005627.

  304. Wang Z-Q, Liu K, Huo Z-J, Li X-C, Wang M, Liu P, et al. A cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. J Nanobiotechnology [Internet]. 2015;13(1):63. Available from: http://www.jnanobiotechnology.com/content/13/1/63.

  305. Specenier P, Vermorken JB. Cetuximab in the treatment of squamous cell carcinoma of the head and neck. Expert Rev Anticancer Ther [Internet]. 2011 Apr;11(4):511–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21504318.

  306. Specenier P, Vermorken JB. Biologic therapy in head and neck cancer: a road with hurdles. ISRN Oncol [Internet]. 2012;2012:163752. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22745915.

  307. Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology [Internet]. 2017;9(1):e1416. Available from: http://doi.wiley.com/10.1002/wnan.1416.

  308. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev [Internet]. 2012;64:206–12. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X12002931.

  309. Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer [Internet]. 2005;93(6):678–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16222314.

  310. Endo K, Ueno T, Kondo S, Wakisaka N, Murono S, Ito M, et al. Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci [Internet]. 2013;104(3):369–74. Available from: http://doi.wiley.com/10.1111/cas.12079.

    Article  CAS  Google Scholar 

  311. Desai KGH. Polymeric drug delivery systems for intraoral site-specific chemoprevention of oral cancer. J Biomed Mater Res Part B Appl Biomater [Internet]. 2018;106(3):1383–413. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.b.33943

    Article  CAS  Google Scholar 

  312. Mazzarino L, Travelet C, Ortega-Murillo S, Otsuka I, Pignot-Paintrand I, Lemos-Senna E, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci [Internet]. 2012;370(1):58–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22284577.

  313. Mazzarino L, Loch-Neckel G, Bubniak LDS, Mazzucco S, Santos-Silva MC, Borsali R, et al. Curcumin-loaded chitosan-coated nanoparticles as a new approach for the local treatment of oral cavity cancer. J Nanosci Nanotechnol [Internet]. 2015;15(1):781–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26328442.

  314. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother [Internet]. 2018;103:598–613. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332218313222.

  315. Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces [Internet]. 2013;110:313–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23732810.

  316. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) [Internet]. 2016;11(6):673–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27003448.

  317. Kulkarni SA, Feng S-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res [Internet]. 2013;30(10):2512–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23314933.

  318. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc [Internet]. 2018;26(1):64–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29379334.

  319. Sim RB, Wallis R. Surface properties: Immune attack on nanoparticles. Nat Nanotechnol [Internet]. 2011;6(2):80–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21293484.

  320. Lee SJ, Morrill AR, Moskovits M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc [Internet]. 2006;128(7):2200–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16478159.

  321. Lee S, Jun B-H. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci [Internet]. 2019;20(4):865. Available from: http://www.mdpi.com/1422-0067/20/4/865.

  322. Doering WE, Piotti ME, Natan MJ, Freeman RG. SERS as a foundation for nanoscale, optically detected biological labels. Adv Mater [Internet]. 2007;19(20):3100–8. Available from: http://doi.wiley.com/10.1002/adma.200701984.

    Article  CAS  Google Scholar 

  323. Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnology [Internet]. 2015;13:1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25592092.

  324. Thapa RK, Kim JH, Jeong J-H, Shin BS, Choi H-G, Yong CS, et al. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloids Surf B Biointerfaces [Internet]. 2017;153:95–103. Available from:. http://www.ncbi.nlm.nih.gov/pubmed/28231500.

  325. Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir [Internet]. 2012;28(5):2727–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22216981.

  326. Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials [Internet]. 2009;30(31):6341–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19698986.

  327. Asharani P V, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol [Internet]. 2009;10:65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19761582.

  328. Satapathy SR, Siddharth S, Das D, Nayak A, Kundu CN. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: implication of base excision repair cascade. Mol Pharm [Internet]. 2015;12(11):4011–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26448277.

  329. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett [Internet]. 2006;6(10):2225–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17034088.

  330. Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm [Internet]. 2019;16(1):1–23. Available from: https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b00810.

    Article  CAS  Google Scholar 

  331. Elsayed I, Huang X, Elsayed M. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett [Internet]. 2006;239(1):129–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304383505007378.

    Article  CAS  Google Scholar 

  332. Lucky SS, Idris NM, Huang K, Kim J, Li Z, Thong PSP, et al. In vivo biocompatibility, biodistribution and therapeutic efficiency of titania coated upconversion nanoparticles for photodynamic therapy of solid oral cancers. Theranostics [Internet]. 2016;6(11):1844–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27570555.

  333. Marcazzan S, Varoni EM, Blanco E, Lodi G, Ferrari M. Nanomedicine, an emerging therapeutic strategy for oral cancer therapy. Oral Oncol [Internet]. 2018;76:1–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1368837517303652.

    Article  CAS  Google Scholar 

  334. Sato I, Umemura M, Mitsudo K, Fukumura H, Kim J-H, Hoshino Y, et al. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles. Sci Rep [Internet]. 2016;6(1):24629. Available from: http://www.nature.com/articles/srep24629

  335. Eguchi H, Umemura M, Kurotani R, Fukumura H, Sato I, Kim J-H, et al. A magnetic anti-cancer compound for magnet-guided delivery and magnetic resonance imaging. Sci Rep [Internet]. 2015;5:9194. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25779357.

  336. Wang D, Xu X, Zhang K, Sun B, Wang L, Meng L, et al. Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment. Int J Nanomedicine [Internet]. 2018;13:187–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29343957.

  337. Shi X-L, Li Y, Zhao L-M, Su L-W, Ding G. Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment. Colloids Surf B Biointerfaces [Internet]. 2019;173:599–606. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30352381.

  338. Huang H-C, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release [Internet]. 2011;155(3):344–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21723891.

  339. Sato I, Umemura M, Mitsudo K, Fukumura H, Kim J-H, Hoshino Y, et al. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles. Sci Rep [Internet]. 2016;6:24629. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27103308.

  340. Sah AK, Vyas A, Suresh PK, Gidwani B. Application of nanocarrier-based drug delivery system in treatment of oral cancer. Artif cells, nanomedicine, Biotechnol [Internet]. 2018;46(4):650–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28880679.

  341. Cavalli R, Soster M, Argenziano M. Nanobubbles: a promising efficienft tool for therapeutic delivery. Ther Deliv [Internet]. 2016;7(2):117–38. Available from: http://www.future-science.com/doi/10.4155/tde.15.92.

    Article  CAS  Google Scholar 

  342. Fang C-L, Al-Suwayeh S, Fang J-Y. Nanostructured Lipid Carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol [Internet]. 2013;7(1):41–55. Available from: http://openurl.ingenta.com/content/xref?genre=article&issn=1872-2105&volume=7&issue=1&spage=41.

    Article  CAS  Google Scholar 

  343. Zlotogorski A, Dayan A, Dayan D, Chaushu G, Salo T, Vered M. Nutraceuticals as new treatment approaches for oral cancer – I: Curcumin. Oral Oncol [Internet]. 2013;49(3):187–91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1368837512003181.

  344. Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine [Internet]. 2016;12(1):143–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26410277.

  345. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci [Internet]. 2018;13(4):288–303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30065762.

  346. Sun M, Su X, Ding B, He X, Liu X, Yu A, et al. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond) [Internet]. 2012;7(7):1085–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22846093.

  347. Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci U S A [Internet]. 2009;106(12):4623–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19273853.

  348. Karavasili C, Panteris E, Vizirianakis IS, Koutsopoulos S, Fatouros DG. Chemotherapeutic delivery from a self-assembling peptide nanofiber hydrogel for the management of glioblastoma. Pharm Res [Internet]. 2018;35(8):166. Available from: http://link.springer.com/10.1007/s11095-018-2442-1.

  349. Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-sadrabadi MM, Ebrahimi M, et al. Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol [Internet]. 2017;35(11):1074–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167779917301646.

    Article  CAS  Google Scholar 

  350. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, et al. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J [Internet]. 2010;1(1):164–209. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23199049.

  351. Narayanaswamy R, Torchilin VP. Hydrogels and their applications in targeted drug delivery. Molecules [Internet]. 2019;24(3):603. Available from: http://www.mdpi.com/1420-3049/24/3/603.

  352. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials [Internet]. 2014;35(7):2383–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014296121301449X.

    Article  CAS  Google Scholar 

  353. Batrakova E V, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release [Internet]. 2015;219:396–405. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26241750.

  354. Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology [Internet]. 2018 16(1):81. Available from: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-018-0403-9.

  355. Jiang X-C, Gao J-Q. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm [Internet]. 2017;521(1–2):167–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28216464.

  356. Dehari H, Ito Y, Nakamura T, Kobune M, Sasaki K, Yonekura N, et al. Enhanced antitumor effect of RGD fiber-modified adenovirus for gene therapy of oral cancer. Cancer Gene Ther [Internet]. 2003;10(1):75–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12489031.

  357. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B [Internet]. 2016;6(4):287–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27471669.

  358. Suliman Y AO, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel SH. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol [Internet]. 2015;30(2):149–60. Available from:. http://www.ncbi.nlm.nih.gov/pubmed/23804405.

  359. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med [Internet]. 2016;375(19):1856–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27718784.

  360. Bertrand A, Kostine M, Barnetche T, Truchetet M-E, Schaeverbeke T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med [Internet]. 2015 ;13:211. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26337719.

  361. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev [Internet]. 2003;55(3):329–47. Available from:. http://www.ncbi.nlm.nih.gov/pubmed/12628320.

  362. Charrueau C, Zandanel C. Drug delivery by polymer nanoparticles: the challenge of controlled release and evaluation. In: Polymer nanoparticles for nanomedicines [Internet]. Cham: Springer International Publishing; 2016. p. 439–503. Available from: http://link.springer.com/10.1007/978-3-319-41421-8_14.

    Chapter  Google Scholar 

  363. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev [Internet]. 2011;63(6):456–69. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X11000172.

    Article  CAS  Google Scholar 

  364. Elsabahy M, Heo GS, Lim S-M, Sun G, Wooley KL. Polymeric nanostructures for imaging and therapy. chem rev [Internet]. 2015;115(19):10967–1011. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26463640.

  365. Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation. Drug Deliv Transl Res [Internet]. 2020;10(3):721–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32166632.

  366. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm [Internet]. 2011;8(6):2101–41. Available from: https://pubs.acs.org/doi/10.1021/mp200394t.

    Article  CAS  Google Scholar 

  367. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med [Internet]. 2019 4(3). Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/btm2.10143

  368. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: A review of FDA-approved materials and Clinical trials to date. Pharm Res [Internet]. 2016;33(10):2373–87. Available from: http://link.springer.com/10.1007/s11095-016-1958-5.

    Article  CAS  Google Scholar 

  369. Venditto VJ, Szoka FC. Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev [Internet]. 2013;65(1):80–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X12002992.

    Article  CAS  Google Scholar 

  370. Kim H-M, Jeong S, Hahm E, Kim J, Cha MG, Kim K-M, et al. Large scale synthesis of surface-enhanced Raman scattering nanoprobes with high reproducibility and long-term stability. J Ind Eng Chem [Internet]. 2016 Jan;33:22–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1226086X15004451.

  371. Lin Y-W, Huang C-C, Chang H-T. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst [Internet]. 2011;136(5):863–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21157604.

  372. Ragelle H, Danhier F, Préat V, Langer R, Anderson DG. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv [Internet]. 2017;14(7):851–64. Available from: https://www.tandfonline.com/doi/full/10.1080/17425247.2016.1244187.

    Article  CAS  Google Scholar 

  373. van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM, Lammers T. Smart cancer nanomedicine. Nat Nanotechnol [Internet]. 2019;14(11):1007–17. Available from: http://www.nature.com/articles/s41565-019-0567-y.

    Article  CAS  Google Scholar 

  374. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev [Internet]. 2017;108:25–38. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X16301351

    Article  CAS  Google Scholar 

  375. Szebeni J, Simberg D, González-Fernández Á, Barenholz Y, Dobrovolskaia MA. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat Nanotechnol [Internet]. 2018;13(12):1100–8. Available from: http://www.nature.com/articles/s41565-018-0273-1

    Article  CAS  Google Scholar 

  376. Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M, et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell [Internet]. 2014 6;159(4):911–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25417165.

  377. Keller PJ, Dodt H-U. Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol [Internet]. 2012;22(1):138–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21925871.

  378. Sindhwani S, Syed AM, Wilhelm S, Chan WCW. Exploring passive clearing for 3D optical imaging of nanoparticles in intact tissues. Bioconjug Chem [Internet]. 2017;28(1):253–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27801589.

  379. Underwood JCE. More than meets the eye: the changing face of histopathology. Histopathology [Internet]. 2017;70(1):4–9. Available from: http://doi.wiley.com/10.1111/his.13047.

    Article  Google Scholar 

  380. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B [Internet] 2006;110(14):7238–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16599493.

  381. Syed AM, Sindhwani S, Wilhelm S, Kingston BR, Lee DSW, Gommerman JL, et al. Three-dimensional imaging of transparent tissues via metal nanoparticle labeling. J Am Chem Soc [Internet]. 2017;139(29):9961–71. Available from: https://pubs.acs.org/doi/10.1021/jacs.7b04022.

    Article  CAS  Google Scholar 

  382. Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater [Internet]. 2013;12(11):958–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24150413.

  383. Sindhwani S, Syed AM, Wilhelm S, Glancy DR, Chen YY, Dobosz M, et al. Three-dimensional optical mapping of nanoparticle distribution in intact tissues. ACS Nano [Internet] 2016;10(5):5468–5478. Available from: https://pubs.acs.org/doi/10.1021/acsnano.6b01879.

  384. De Felice F, Cavallini C, Barlattani A, Tombolini M, Brugnoletti O, Tombolini V, et al. Nanotechnology in oral cavity carcinoma: recent trends and treatment opportunities. Nanomater (Basel, Switzerland) [Internet]. 2019;9(11). Available from: http://www.ncbi.nlm.nih.gov/pubmed/31683582.

  385. Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology [Internet]. 2002;222(1):239–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11756732.

  386. Mack MG, Rieger J, Baghi M, Bisdas S, Vogl TJ. Cervical lymph nodes. Eur J Radiol [Internet]. 2008;66(3):493–500. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18337039.

  387. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci [Internet]. 2009;30(11):592–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19837467.

  388. Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nurenberg P, et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology [Internet]. 2003;228(3):777–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12954896.

  389. Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol [Internet]. 2001;11(11):2319–31. Available from: http://link.springer.com/10.1007/s003300100908.

    Article  CAS  Google Scholar 

  390. Alex JC, Krag DN. Gamma-probe guided localization of lymph nodes. Surg Oncol [Internet]. 1993;2(3):137–43. Available from: https://linkinghub.elsevier.com/retrieve/pii/096074049390001F.

    Article  CAS  Google Scholar 

  391. Ramamurthy R, Kottayasamy Seenivasagam R, Shanmugam S, Palanivelu K. A prospective study on sentinel lymph node biopsy in early oral cancers Using methylene blue dye alone. Indian J Surg Oncol [Internet]. 2014;5(3):178–83. Available from: http://link.springer.com/10.1007/s13193-014-0337-0.

    Article  Google Scholar 

  392. Vishnoi JR, Kumar V, Gupta S, Chaturvedi A, Misra S, Akhtar N, et al. Outcome of sentinel lymph node biopsy in early-stage squamous cell carcinoma of the oral cavity with methylene blue dye alone: a prospective validation study. Br J Oral Maxillofac Surg [Internet]. 2019;57(8):755–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266435619302475.

    Article  CAS  Google Scholar 

  393. Hutteman M, van der Vorst JR, Gaarenstroom KN, Peters AAW, Mieog JSD, Schaafsma BE, et al. Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer. Am J Obstet Gynecol [Internet]. 2012;206(1):89.e1-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21963099.

  394. Jeong H-S, Lee C-M, Cheong S-J, Kim E-M, Hwang H, Na KS, et al. The effect of mannosylation of liposome-encapsulated indocyanine green on imaging of sentinel lymph node. J Liposome Res [Internet]. 2013;23(4):291–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23738810.

  395. Zhang Z, Lee SH, Gan CW, Feng S-S. In vitro and in vivo investigation on PLA-TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res [Internet] 2008;25(8):1925–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18509603.

  396. Prashant C, Dipak M, Yang C-T, Chuang K-H, Jun D, Feng S-S. Superparamagnetic iron oxide--loaded poly(lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Biomaterials [Internet]. 2010;31(21):5588–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20434210.

  397. Yan A, Von Dem Bussche A, Kane AB, Hurt RH. Tocopheryl polyethylene glycol succinate as a safe, antioxidant surfactant for processing carbon nanotubes and fullerenes. Carbon N Y [Internet]. 2007;45(13):2463–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0008622307004332.

    Article  CAS  Google Scholar 

  398. di Cagno M, Stein PC, Styskala J, Hlaváč J, Skalko-Basnet N, Bauer-Brandl A. Overcoming instability and low solubility of new cytostatic compounds: a comparison of two approaches. Eur J Pharm Biopharm [Internet]. 2012;80(3):657–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22142591.

  399. Xu H, Abe H, Naito M, Fukumori Y, Ichikawa H, Endoh S, et al. Efficient dispersing and shortening of super-growth carbon nanotubes by ultrasonic treatment with ceramic balls and surfactants. Adv Powder Technol [Internet] 2010;21(5):551–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0921883110000269.

  400. Mi Y, Liu Y, Feng S-S. Formulation of Docetaxel by folic acid-conjugated d-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS(2k)) micelles for targeted and synergistic chemotherapy. Biomaterials [Internet]. 2011;32(16):4058–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21396707.

  401. Anbharasi V, Cao N, Feng S-S. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol succinate and folic acid as a prodrug for targeted chemotherapy. J Biomed Mater Res A [Internet]. 2010;94(3):730–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20225211.

  402. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of Vitamin E TPGS in drug delivery. Eur J Pharm Sci [Internet]. 2013;49(2):175–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23485439.

  403. Collnot E-M, Baldes C, Schaefer UF, Edgar KJ, Wempe MF, Lehr C-M. Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm [Internet]. 2010;7(3):642–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20205474.

  404. Liu Y, Huang L, Liu F. Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm [Internet]. 2010;7(3):863–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20420443.

  405. Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, et al. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm [Internet]. 2017;529(1–2):506–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517317306178.

    Article  CAS  Google Scholar 

  406. Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian B-Z, et al. Real-time Imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov [Internet]. 2015;5(9):932–43. Available from: http://cancerdiscovery.aacrjournals.org/cgi/doi/10.1158/2159-8290.CD-15-0012.

    Article  CAS  Google Scholar 

  407. Naumenko VA, Vlasova KY, Garanina AS, Melnikov PA, Potashnikova DM, Vishnevskiy DA, et al. Extravasating neutrophils open vascular barrier and improve liposomes delivery to tumors. ACS Nano [Internet]. 2019;13(11):12599–612. Available from: https://pubs.acs.org/doi/10.1021/acsnano.9b03848.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ebrahimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebrahimi, M. (2021). Nanotechnology for Diagnosis, Imaging, and Treatment of Head and Neck Cancer. In: El Assal, R., Gaudilliere, D., Connelly, S.T. (eds) Early Detection and Treatment of Head & Neck Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-69859-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69859-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69858-4

  • Online ISBN: 978-3-030-69859-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics