Skip to main content

The PDD Method for Solving Linear, Nonlinear, and Fractional PDEs Problems

  • Chapter
  • First Online:
Nonlocal and Fractional Operators

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 26))

Abstract

We review the Probabilistic Domain Decomposition (PDD) method for the numerical solution of linear and nonlinear Partial Differential Equation (PDE) problems. This Domain Decomposition (DD) method is based on a suitable probabilistic representation of the solution given in the form of an expectation which, in turns, involves the solution of a Stochastic Differential Equation (SDE). While the structure of the SDE depends only upon the corresponding PDE, the expectation also depends upon the boundary data of the problem. The method consists of three stages: (i) only few values of the sought solution are solved by Monte Carlo or Quasi-Monte Carlo at some interfaces; (ii) a continuous approximation of the solution over these interfaces is obtained via interpolation; and (iii) prescribing the previous (partial) solutions as additional Dirichlet boundary conditions, a fully decoupled set of sub-problems is finally solved in parallel. For linear parabolic problems, this is based on the celebrated Feynman-Kac formula, while for semilinear parabolic equations requires a suitable generalization based on branching diffusion processes. In case of semilinear transport equations and the Vlasov-Poisson system, a generalization of the probabilistic representation was also obtained in terms of the Method of Characteristics (characteristic curves). Finally, we present the latest progress towards the extension of the PDD method for nonlocal fractional operators. The algorithm notably improves the scalability of classical algorithms and is suited to massively parallel implementation, enjoying arbitrary scalability and fault tolerance properties. Numerical examples conducted in 1D and 2D, including some for the KPP equation and Plasma Physics, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Domain decomposition solution of elliptic boundary-value problems via Monte Carlo and Quasi-Monte Carlo methods. SIAM J. Sci. Comput. 27(2), 440–457 (2005)

    Google Scholar 

  2. Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Probabilistically induced domain decomposition methods for elliptic boundary-value problems. J. Comput. Phys. 210(2), 421–438 (2005)

    Article  MathSciNet  Google Scholar 

  3. Acebrón, J.A., Rodríguez-Rozas, A., Spigler, R.: Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees. J. Comput. Phys. 228(15), 5574–5591 (2009)

    Article  MathSciNet  Google Scholar 

  4. Acebrón, J.A., Rodríguez-Rozas, A., Spigler, R.: Efficient Parallel Solution of Nonlinear Parabolic Partial Differential Equations by a Probabilistic Domain Decomposition. J. Sci. Comput. 43(2), 135–157 (2010)

    Article  MathSciNet  Google Scholar 

  5. Acebrón, J.A., Rodríguez-Rozas, A.: A new parallel solver suited for arbitrary semilinear parabolic partial differential equations based on generalized random trees. J. Comput. Phys. 230(21), 7891–7909 (2011)

    Article  MathSciNet  Google Scholar 

  6. Acebrón, J.A., Rodríguez-Rozas, A.: Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov-Poisson simulations. J. Comput. Phys. 250, 224–245 (2013)

    Article  MathSciNet  Google Scholar 

  7. Acebrón, J.A., Ribeiro, M.A.: A Monte Carlo method for solving the one-dimensional telegraph equations with boundary conditions. J. Comput. Phys. 305, 29–43 (2016)

    Article  MathSciNet  Google Scholar 

  8. Rodríguez-Rozas, A.: Highly Efficient Probabilistic-Based Numerical Algorithms for Solving Partial Differential Equations on Massively Parallel Computers. PhD Thesis in Computational Engineering, Instituto Superior Tècnico, Universidade Tècnica de Lisboa (2012)

    Google Scholar 

  9. Antia, H.M.: Numerical Methods for Scientists and Engineers. Tata McGraw-Hill, New Delhi (1995)

    Google Scholar 

  10. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    Google Scholar 

  11. Baker, G.A., Graves-Morris, P.: Padé Approximants. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  12. Baldi, P.: Exact asymptotics for the probability of exit from a domain and applications to simulation. Ann. Prob. 23, 1644–1670 (1995)

    Article  MathSciNet  Google Scholar 

  13. Bender, C., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw Hill, New York (1978)

    MATH  Google Scholar 

  14. Bernal, F., dos Reis, G., Smith, G.: Hybrid PDE solver for data-driven problems and modern branching. European J. Appl. Math. 28, 949–972 (2017)

    Article  MathSciNet  Google Scholar 

  15. Bhattacharya, R., Chen, L., Dobson, S., Guenther, R.B., Orum, C.: Majorizing Kernels and Stochastic Cascades with Applications to Incompressible Navier-Stokes Equations. Ossiander, M., Thomann, E., Waymire, E.C. Reviewed work (s): Source : Transactions of the American Mathematical Society , Vol . 355 , No. Transactions of the American Mathematical Society, 355:5003–5040, 2003

    Google Scholar 

  16. Buchmann, F.M.: Computing exit times with the Euler scheme, Research report no. 2003-02, ETH (2003)

    Google Scholar 

  17. Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229(6), 1927–1953 (2010)

    Google Scholar 

  18. Cusimano, N., del Teso, F., Gerardo-Giorda, L., Pagnini, G.: Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal. 56, 1243–1272 (2018)

    Article  MathSciNet  Google Scholar 

  19. Davidson, R.C.: Kinetic Waves and Instabilities in Uniform Plasma. In: Galeev, A.A., Sudan, R.N., Handbook of Plasma Physics, Vol. 1, pp. 521–585. North-Holland Publishing Company (1983)

    Google Scholar 

  20. DeBoor, C.: A Practical Guide to Splines. Springer (1994)

    Google Scholar 

  21. DuChateau, P., Zachmann, D.: Applied Partial Differential Equations. Dover Publications (2002)

    Google Scholar 

  22. Duo, S., Wang, H., Zhang, Y.: A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete Contin. Dyn. Syst. B 24, 231–256 (2019)

    Article  MathSciNet  Google Scholar 

  23. Eliasson, B.: Outflow Boundary Conditions for the Fourier Transformed One-Dimensional Vlasov Poisson System. J. Sci. Comput. 16(1), 1–28 (2001)

    Article  MathSciNet  Google Scholar 

  24. Floriani, E., Lima, R., Vilela Mendes, R.: Poisson-Vlasov: stochastic representation and numerical codes. Eur. Phys. J. D 46(2):295–302 (2007)

    Google Scholar 

  25. Freidlin, M.: Functional Integration and Partial Differential Equations. Annals of Mathematics Studies no. 109, Princeton Univ. Press, Princeton (1985)

    Google Scholar 

  26. Gobet, E.: Weak approximation of killed diffusion using Euler schemes. Stoch. Process. Appl. 87, 167–197 (2000)

    Article  MathSciNet  Google Scholar 

  27. Gobet, E., Menozzi, S.: Stopped diffusion processes: boundary corrections and overshoot. Stoch. Process. Appl. 120, 130–162 (2010)

    Article  MathSciNet  Google Scholar 

  28. Kalos, M.H., and Withlock, P.A.: Monte Carlo Methods, Vol. I: Basics. Wiley, New York (1986)

    Google Scholar 

  29. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    Google Scholar 

  30. Klimas, A.J.: A numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution. J. Comput. Math. 50, 270–306 (1983)

    MATH  Google Scholar 

  31. Klimas, A.J.: Vlasov-Maxwell and Vlasov-Poisson equations as models of a one-dimensional electron plasma. Phys. Fluids 26(2), 478 (1983)

    Article  MathSciNet  Google Scholar 

  32. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Google Scholar 

  33. McKean, H.P.: Application of brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28, 323–331 (1975)

    Article  MathSciNet  Google Scholar 

  34. Mannella, R.: Absorbing boundaries and optimal stopping in a stochastic differential equation. Phys. Lett. A 254, 257–262 (1999)

    Article  MathSciNet  Google Scholar 

  35. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer (2004)

    Google Scholar 

  36. Buchmann, F.M., Petersen, W.P.: An Exit Probability Approach to Solving High Dimensional Dirichlet Problems, SIAM J. Scient. Comput. 28(3), 1153–1166 (2006)

    Google Scholar 

  37. Ramirez, J.M.: (two numerical examples). J. Comput. Phys. 214, 122–136 (2006)

    Google Scholar 

  38. Regnier, H., Talay, D.: Special Edition of the Proceedings of the Royal Society on Stochastic Analysis A(460), 199–220 (2004)

    Google Scholar 

  39. Fulger, D., Scalas, E., Germano, G.: Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev. E 77, 1–7 (2008)

    Article  Google Scholar 

  40. Shikin, E.V., Plis, A.I.: Handbook on Splines for the User. CRC-Press (1995)

    Google Scholar 

  41. Strittmatter, W.: Numerical Simulation of The Mean First Passage Time. University Freiburg Report No. THEP 87/12 (unpublished)

    Google Scholar 

  42. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M., Ainsworth, M., Karniadakis, G.: What Is the Fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, (2020)

    Google Scholar 

  43. R. Vilela Mendes. Poisson-Vlasov in a strong magnetic field: A stochastic solution approach. J. Mathe. Phys. 51(4), 043101 (2010)

    Google Scholar 

  44. Wuytack, L.: On the conditioning of the Pade approximant problem. Lect. Notes Math. 888, 78–89 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Rodríguez-Rozas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Rozas, Á., Acebrón, J.A., Spigler, R. (2021). The PDD Method for Solving Linear, Nonlinear, and Fractional PDEs Problems. In: Beghin, L., Mainardi, F., Garrappa, R. (eds) Nonlocal and Fractional Operators. SEMA SIMAI Springer Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-69236-0_13

Download citation

Publish with us

Policies and ethics