Skip to main content

Rice: A Versatile Food at the Heart of the Mediterranean Diet

  • Chapter
  • First Online:
Cereal-Based Foodstuffs: The Backbone of Mediterranean Cuisine

Abstract

Although being the most consumed food in Asia, rice plays a key role also in the diet of many countries, including those of the Mediterranean area. The availability of thousands of varieties — different in pedo-climatic adaptability, size and texture of the grain, bioactive and aromatic compounds, protein and starch features and, consequently, cooking behavior — has made it possible to satisfy tastes and nutritional needs specific for each population.

The most common way of eating rice is as grain and its cooking can take place in different ways (in excess of water, pilaf method, parboiled rice or risotto) to obtain the desired texture according to the recipe. Various technologies have been developed to encourage the consumption of rice but satisfying the current market demands (e.g., quick cooking rice and frozen rice).

Alongside traditional consumption, in recent decades rice has been increasingly sought after as an ingredient of various food formulations, including gluten-free products (i.e., pasta, bread and bakery products) and other products that are now widespread in Mediterranean countries, such as couscous, breakfast cereals, extruded products and baby foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 establishing a common organisation of the markets in agricultural products and repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007.

    Google Scholar 

  2. www.fao.org.

  3. Saleh AS, Wang P, Wang N, Yang L, Xiao Z. Brown rice versus white rice: nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr Rev Food Sci Food Saf. 2019;18:1070–96.

    Article  PubMed  Google Scholar 

  4. Zhou Z, Robards K, Helliwell S, Blanchard C. Composition and functional properties of rice. Int J Food Sci Technol. 2002;37:849–68.

    Article  CAS  Google Scholar 

  5. Kitta K, Ebihara M, Iizuka T, Yoshikawa R, Isshiki K, Kawamoto S. Variations in lipid content and fatty acid composition of major non-glutinous rice cultivars in Japan. J Food Compos Anal. 2005;18:269–78.

    Article  CAS  Google Scholar 

  6. Yu L, Turner MS, Fitzgerald M, Stokes JR, Witt T. Review of the effects of different processing technologies on cooked and convenience rice quality. Trends Food Sci Techn. 2017;59:124–38.

    Article  CAS  Google Scholar 

  7. Crowhurst DG, Creed PG. Effect of cooking method and variety on the sensory quality of rice. Food Serv Technol. 2001;1:133–40.

    Article  Google Scholar 

  8. Son JS, Do VB, Kim KO, Cho MS, Suwonsichon T, Valentin D. Consumers’ attitude towards rice cooking processes in Korea, Japan, Thailand and France. Food Qual Pref. 2013;29:65–75.

    Article  Google Scholar 

  9. Perez CM, Juliano BO. Indicators of eating quality for non-waxy rices. Food Chem. 1979;4:185–95.

    Article  Google Scholar 

  10. Kasai M, Lewis A, Marica F, Ayabe S, Hatae K, Fyfe CA. NMR imaging investigation of rice cooking. Food Res Int. 2005;38:403–10.

    Article  CAS  Google Scholar 

  11. Fitzgerald MA. Starch. In: Champagne ET, editor. Rice: chemistry and technology. St Paul: American Association of Cereal Chemists International; 2004. p. 109–41.

    Chapter  Google Scholar 

  12. Bett-Garber KL, Champagne ET, Ingram DA, McClung AM. Influence of water-to-rice ratio on cooked rice flavor and texture. Cereal Chem. 2007;84:614–9.

    Article  CAS  Google Scholar 

  13. Das T, Subramanian R, Chakkaravarthi A, Singh V, Ali SZ, Bordoloi PK. Energy conservation in domestic rice cooking. J Food Eng. 2006;75:156–66.

    Article  Google Scholar 

  14. Suzuki U, Kubota K, Omichi M, Hosaka H. Kinetic studies on cooking of rice. J Food Sci. 1976;41:1180–3.

    Article  Google Scholar 

  15. Billiris MA, Siebenmorgen TJ, Meullenet JF, Mauromoustakos A. Rice degree of milling effects on hydration, texture, sensory and energy characteristics. Part 1. Cooking using excess water. J Food Eng. 2012;113:559–68.

    Article  Google Scholar 

  16. Mestres C, Ribeyre F, Pons B, Fallet V, Matencio. Sensory texture of cooked rice is rather linked to chemical than to physical characteristics of raw grain. J Cereal Sci. 2011;53:81–9.

    Article  CAS  Google Scholar 

  17. Finocchiaro F, Ferrari B, Gianinetti A, Dall'Asta C, Galaverna G, Scazzina F, Pellegrini N. Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing. Mol Nutr Food Res. 2007;51:1006–19.

    Article  CAS  PubMed  Google Scholar 

  18. Zaupa M, Calani L, Del Rio D, Brighenti F, Pellegrini N. Characterization of total antioxidant capacity and (poly) phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chem. 2015;187:338–47.

    Article  CAS  PubMed  Google Scholar 

  19. Catena S, Turrini F, Boggia R, Borriello M, Gardella M, Zunin P. Effects of different cooking conditions on the anthocyanin content of a black rice (Oryza sativa L.‘Violet Nori’). Eur Food Res. 2019;245:2303–10.

    Article  CAS  Google Scholar 

  20. Ali N, Pandya AC. Basic concept of parboiling of paddy. J Agric Eng Res. 1974;19:111–5.

    Article  Google Scholar 

  21. Bhattacharya M, Zee SY, Corke H. Physicochemical properties related to quality of rice noodles. Cereal Chem. 1999;76:861–7.

    Article  CAS  Google Scholar 

  22. Bhattacharya KR. Parboiling of rice. In: Champagne ET, editor. Rice: chemistry and technology. St. Paul: The American Association of Cereal Chemists; 2004. p. 329–404.

    Chapter  Google Scholar 

  23. Casiraghi MC, Brighenti F, Pellegrini N, Leopardi E, Testolin G. Effects of processing on rice starch digestibility evaluated by in vivo and in vitro methods. J Cereal Sci. 1993;17:147–56.

    Article  Google Scholar 

  24. https://www.alimentinutrizione.it/tabelle-nutrizionali/

  25. Min B, McClung A, Chen MH. Effects of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.). Food Chem. 2014;159:106–15.

    Article  CAS  PubMed  Google Scholar 

  26. Walter M, Marchesan E, Massoni PFS, da Silva LP, Sartori GMS, Ferreira RB. Antioxidant properties of rice grains with light brown, red and black pericarp colors and the effect of processing. Food Res Int. 2013;50:698–703.

    Article  CAS  Google Scholar 

  27. Paiva FF, Vanier NL, Berrios JDJ, Pinto VZ, Wood D, Williams T, et al. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice. Food Chem. 2014;191:105–12.

    Article  CAS  Google Scholar 

  28. Mizuno H, Kajiwara K. Method for producing quick-cooking rice. PCT International Patent Application; 2019.

    Google Scholar 

  29. Bhattacharya KR, Ali SZ. Rice products. In: Bhattacharya KR, Ali SZ, editors. An introduction to rice-grain technology. Boca Raton: CRC Press; 2015. p. 188–217.

    Chapter  Google Scholar 

  30. Rizk LF, Doss HA. Preparation of improved quick cooking rice. Food Nahrung. 1995;39:124–31.

    Article  Google Scholar 

  31. Prasert W, Suwannaporn P. Optimization of instant jasmine rice process and its physicochemical properties. J Food Eng. 2009;95:54–61.

    Article  CAS  Google Scholar 

  32. Saleh MI. Protein-starch matrix microstructure during rice flour pastes formation. J Cereal Sci. 2017;74:183–6.

    Article  CAS  Google Scholar 

  33. de Souza Batista C, dos Santos JP, Dittgen CL, Colussi R, Bassinello PZ, Elias MC, Vanier NL. Impact of cooking temperature on the quality of quick cooking brown rice. Food Chem. 2019;286:98–105.

    Article  CAS  Google Scholar 

  34. www.marketsandmarkets.com

  35. Pellegrini N, Agostoni C. Nutritional aspects of gluten-free products. J Sci Food Agric. 2015;95:2380–5.

    Article  CAS  PubMed  Google Scholar 

  36. Morreale F, Agnoli C, Roncoroni L, Sieri S, Lombardo V, Mazzeo T, et al. Are the dietary habits of treated individuals with celiac disease adherent to a Mediterranean diet? Nutr Metab Cardiovasc Dis. 2018;28:1148–54.

    Article  CAS  PubMed  Google Scholar 

  37. Di Cairano M, Galgano F, Tolve R, Caruso MC, Condelli N. Focus on gluten free biscuits: Ingredients and issues. Trends Food Sci Technol. 2018;81:203–12.

    Article  CAS  Google Scholar 

  38. Morreale F, Boukid F, Carini E, Federici E, Vittadini E, Pellegrini N. An overview of the Italian market for 2015: cooking quality and nutritional value of gluten-free pasta. Int J Food Sci Technol. 2019;54:780–6.

    Article  CAS  Google Scholar 

  39. Marti A, D’Egidio MG, Dreisoerner J, Seetharaman K, Pagani MA. Temperature-induced changes in dough elasticity as a useful tool in defining the firmness of cooked pasta. Eur Food Res Technol. 2014;238:333–6.

    Article  CAS  Google Scholar 

  40. Marti A, Seetharaman K, Pagani MA. Rheological approaches suitable for investigating starch and protein properties related to cooking quality of durum wheat pasta. J Food Qual. 2013;36:133–8.

    Article  CAS  Google Scholar 

  41. Marti A, Seetharaman K, Pagani MA. Rice-based pasta: a comparison between conventional pasta-making and extrusion-cooking. J Cereal Sci. 2010;52:404–9.

    Article  Google Scholar 

  42. Cabrera-Chávez F, de la Barca AMC, Islas-Rubio AR, Marti A, Marengo M, Pagani MA, et al. Molecular rearrangements in extrusion processes for the production of amaranth-enriched, gluten-free rice pasta. LWT Food Sci Technol. 2012;47:421–6.

    Article  CAS  Google Scholar 

  43. Marti A, Abbasi Parizad P, Marengo M, Erba D, Pagani MA, Casiraghi MC. In vitro starch digestibility of commercial gluten-free pasta: the role of ingredients and origin. J Food Sci. 2017;82:1012–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Duan W, Zhou S, Qian H, Zhang H, Qi X. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chem. 2016;204:320–5.

    Article  CAS  PubMed  Google Scholar 

  45. da Silva EMM, Ascheri JLR, Ascheri DPR. Quality assessment of gluten-free pasta prepared with a brown rice and corn meal blend via thermoplastic extrusion. LWT Food Sci Technol. 2016;68:698–706.

    Article  CAS  Google Scholar 

  46. Wang L, Duan W, Zhou S, Qian H, Zhang H, Qi X. Effect of rice bran fibre on the quality of rice pasta. Int J Food Sci Technol. 2018;53:81–7.

    Article  CAS  Google Scholar 

  47. Mariotti M, Iametti S, Cappa C, Rasmussen P, Lucisano M. Characterisation of gluten-free pasta through conventional and innovative methods: evaluation of the uncooked products. J Cereal Sci. 2011;53:319–27.

    Article  CAS  Google Scholar 

  48. Resmini P, Pagani MA. Ultrastructure studies of pasta. A review. Food Struct. 1983;2:1–12.

    Google Scholar 

  49. Tan HZ, Li ZG, Tan B. Starch noodles: history, classification, materials, processing, structure, nutrition, quality evaluating and improving. Food Res Int. 2009;42:551–76.

    Article  CAS  Google Scholar 

  50. Marti A, Pagani MA. What can play the role of gluten in gluten free pasta? Trends Food Sci Technol. 2013;31:63–71.

    Article  CAS  Google Scholar 

  51. Marti A, Caramanico R, Bottega G, Pagani MA. Cooking behavior of rice pasta: effect of thermal treatments and extrusion conditions. LWT Food Sci Technol. 2013;54:229–35.

    Article  CAS  Google Scholar 

  52. Barbiroli A, Bonomi F, Casiraghi MC, Iametti S, Pagani MA, Marti A. Process conditions affect starch structure and its interactions with proteins in rice pasta. Carbohydr Polym. 2013;92:1865–72.

    Article  CAS  PubMed  Google Scholar 

  53. Marti A, Barbiroli A, Marengo M, Fongaro L, Iametti S, Pagani MA. Structuring and texturing gluten-free pasta: egg albumen or whey proteins? Eur Food Res Technol. 2014;238:217–24.

    Article  CAS  Google Scholar 

  54. Lai HM. Effects of rice properties and emulsifiers on the quality of rice pasta. J Sci Food Agric. 2002;82:203–16.

    Article  CAS  Google Scholar 

  55. Grugni G, Mazzini F, Viazzo G, Viazzo N. Patent EP 2110026 B1. 2009; Application number: 09000385.6.

    Google Scholar 

  56. Marti A, Pagani MA, Seetharaman K. Understanding starch organisation in gluten-free pasta from rice flour. Carbohydr Polym. 2011;84:1069–84.

    Article  CAS  Google Scholar 

  57. Marti A, Pagani MA, Seetharaman K. Characterizing starch structure in a gluten-free pasta by using iodine vapor as a tool. Starch-Starke. 2011;63:241–4.

    Article  CAS  Google Scholar 

  58. Marti A, D’Egidio MA, Pagani MA. Pasta: quality testing methods. In: Wrigley CW, Corke H, Seetharaman K, Faubion J, editors. Encyclopedia of food grains. Oxford: Academic; 2015. p. 161–5.

    Google Scholar 

  59. Grugni G, Mazzini F, Viazzo G, Viazzo N. Patent EP EP 2534960. 2014; Application number: 2454616.

    Google Scholar 

  60. Marti A, Ragg EM, Pagani MA. Effect of processing conditions on water mobility and cooking quality of gluten-free pasta. A magnetic resonance imaging study. Food Chem. 2018;266:17–23.

    Article  CAS  PubMed  Google Scholar 

  61. Marengo M, Amoah I, Carpen A, Benedetti S, Zanoletti M, Buratti S, et al. Enriching gluten-free rice pasta with soybean and sweet potato flours. J Food Sci Technol. 2018;55:2641–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roman L, Belorio M, Gomez M. Gluten-free breads: the gap between research and commercial reality. Compr Rev Food Sci Food Saf. 2019;18:690–702.

    Article  CAS  PubMed  Google Scholar 

  63. Mancebo CM, Merino C, Martinez MM, Gomez M. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality. J Food Sci Technol. 2015;52:6323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Masure HG, Fierens E, Delcour JA. Current and forward looking experimental approaches in gluten-free bread making research. J Cereal Sci. 2016;67:92–111.

    Article  CAS  Google Scholar 

  65. Föste M, Verheyen C, Jekle M, Becker T. Fibres of milling and fruit processing by-products in gluten-free bread making: a review of hydration properties, dough formation and quality-improving strategies. Food Chem. 2020;306:125451.

    Article  PubMed  CAS  Google Scholar 

  66. Renzetti S, Arendt EK. Effect of protease treatment on the baking quality of brown rice bread: from textural and rheological properties to biochemistry and microstructure. J Cereal Sci. 2009;50:22–8.

    Article  CAS  Google Scholar 

  67. Cornejo F, Rosell CM. Influence of germination time of brown rice in relation to flour and gluten free bread quality. J Food Sci Technol. 2015;52:6591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cho DH, Lim ST. Germinated brown rice and its bio-functional compounds. Food Chem. 2016;196:259–71.

    Article  CAS  PubMed  Google Scholar 

  69. Wunthunyarat W, Seo HS, Wang YJ. Effects of germination conditions on enzyme activities and starch hydrolysis of long-grain brown rice in relation to flour properties and bread qualities. J Food Sci. 2020;85:349–57.

    Article  CAS  PubMed  Google Scholar 

  70. Phimolsiripol Y, Mukprasirt A, Schoenlechner R. Quality improvement of rice-based gluten-free bread using different dietary fibre fractions of rice bran. J Cereal Sci. 2012;56:389–95.

    Article  CAS  Google Scholar 

  71. Fabian C, Ju YH. A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr. 2011;51:816–27.

    Article  CAS  PubMed  Google Scholar 

  72. Phongthai S, D’Amico S, Schoenlechner R, Rawdkuen S. Comparative study of rice bran protein concentrate and egg albumin on gluten-free bread properties. J Cereal Sci. 2016;72:38–45.

    Article  CAS  Google Scholar 

  73. de la Hera E, Martinez M, Gómez M. Influence of flour particle size on quality of gluten-free rice bread. LWT Food Sci Technol 2013; 54:199-206.

    Google Scholar 

  74. de La Hera E, Rosell CM, Gomez M. Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chem. 2014;151:526–31.

    Article  PubMed  CAS  Google Scholar 

  75. Mir SA, Shah MA, Naik HR, Zargar IA. Influence of hydrocolloids on dough handling and technological properties of gluten-free breads. Trends Food Sci Technol. 2016;51:49–57.

    Article  CAS  Google Scholar 

  76. Bender D, Schönlechner R. Innovative approaches towards improved gluten-free bread properties. J Cereal Sci. 2020;91:102904.

    Article  CAS  Google Scholar 

  77. Marco C, Rosell C. Breadmaking performance of protein enriched, gluten-free breads. Eur Food Res Technol. 2008;227:1205–13.

    Article  CAS  Google Scholar 

  78. Cornejo F, Rosell CM. Physicochemical properties of long rice grain varieties in relation to gluten free bread quality. LWT Food Sci Technol. 2015;62:1203–10.

    Article  CAS  Google Scholar 

  79. Roman L, Reguilon MP, Gomez M, Martinez MM. Intermediate length amylose increases the crumb hardness of rice flour gluten-free breads. Food Hydrocoll. 2020;100:105451.

    Article  CAS  Google Scholar 

  80. Kang TY, Sohn KH, Yoon MR, Lee JS, Ko S. Effect of the shape of rice starch granules on flour characteristics and gluten-free bread quality. Int J Food Sci Technol. 2015;50:1743–9.

    Article  CAS  Google Scholar 

  81. Tavares BO, Silva E, Silva VS, Junior M, Ida E, Damiani C. Stability of gluten free sweet biscuit elaborated with rice bran, broken rice and okara. Food Sci Technol. 2016;36:296–303.

    Article  Google Scholar 

  82. Schober TJ, O'Brien CM, McCarthy D, Darnedde A, Arendt EK. Influence of gluten-free flour mixes and fat powders on the quality of gluten-free biscuits. Eur Food Res Technol. 2003;216:369–76.

    Article  CAS  Google Scholar 

  83. Giuberti G, Rocchetti G, Sigolo S, Fortunati P, Lucini L, Gallo A. Exploitation of alfalfa seed (Medicago sativa L.) flour into gluten-free rice cookies: nutritional, antioxidant and quality characteristics. Food Chem. 2018:239679–87.

    Google Scholar 

  84. Rocchetti G, Senizza A, Gallo A, Lucini L, Giuberti G, Patrone V. In vitro large intestine fermentation of gluten-free rice cookies containing alfalfa seed (Medicago sativa L.) flour: a combined metagenomic/metabolomic approach. Food Res Int. 2019;120:312–21.

    Article  CAS  PubMed  Google Scholar 

  85. Haralampu SG. Resistant starch—a review of the physical properties and biological impact of RS3. Carbohydr Polym. 2000;41:285–92.

    Article  CAS  Google Scholar 

  86. Graybosch RA. Waxy wheats: origin, properties, and prospects. Trends Food Sci Technol. 1998;9:135–42.

    Article  CAS  Google Scholar 

  87. Shi MM, Gao QY. Physicochemical properties, structure and in vitro digestion of resistant starch from waxy rice starch. Carbohydr Polym. 2011;84:1151–7.

    Article  CAS  Google Scholar 

  88. Van Hung P, Chau HT, Phi NTL. In vitro digestibility and in vivo glucose response of native and physically modified rice starches varying amylose contents. Food Chem. 2016;191:74–80.

    Article  PubMed  CAS  Google Scholar 

  89. Van Hung P, Vien NL, Phi NTL. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chem. 2016;191:67–73.

    Article  CAS  PubMed  Google Scholar 

  90. Giuberti G, Marti A, Fortunati P, Gallo A. Gluten free rice cookies with resistant starch ingredients from modified waxy rice starches: nutritional aspects and textural characteristics. J Cereal Sci. 2017;76:157–64.

    Article  CAS  Google Scholar 

  91. Sharma R, Srivastava T, Saxena DC. Valorization of deoiled rice bran by development and process optimization of extrudates. Eng Agric Envron Food. 2019;12:173–80.

    Article  Google Scholar 

  92. Pasqualone A, Costantini M, Coldea TE, Summo C. Use of legumes in extrusion cooking: a review. Foods. 2020;9(7):958.

    Article  CAS  PubMed Central  Google Scholar 

  93. Riaz MN. Extruded snacks. In: Hui YH, Sherkat F, editors. Handbook of food science, technology, and engineering. Boca Raton: Taylor & Francis; 2006. p. 168-1–8.

    Google Scholar 

  94. Alam MS, Kaur J, Khaira H, Gupta K. Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Crit Rev Food Sci Nutr. 2016;56:445–73.

    Article  CAS  PubMed  Google Scholar 

  95. Hagenimana A, Ding X, Fang T. Evaluation of rice flour modified by extrusion cooking. J Cereal Sci. 2006;43:38–46.

    Article  CAS  Google Scholar 

  96. Dalbhagat CG, Mahato DK, Mishra HN. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: a review. Trends Food Sci Technol. 2019;85:226–40.

    Article  CAS  Google Scholar 

  97. Brennan C, Brennan M, Derbyshire E, Tiwari BK. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci Technol. 2011;22:570–5.

    Article  CAS  Google Scholar 

  98. Guha M, Ali SZ. Changes in rheological properties of rice flour during extrusion cooking. J Texture Stud. 2011;42:451–8.

    Article  Google Scholar 

  99. Chanvrier H, Pillin CN, Vandeputte G, Haiduc A, Leloup V, Gumy JC. Impact of extrusion parameters on the properties of rice products: a physicochemical and X-ray tomography study. Food Struct. 2015;6:29–40.

    Article  Google Scholar 

  100. Tumuluru JS, Sokhansanj S, Bandyopadhyay S, Bawa AS. Changes in moisture, protein, and fat content of fish and rice flour coextrudates during single-screw extrusion cooking. Food Bioprocess Technol. 2013;6:403–15.

    Article  CAS  Google Scholar 

  101. Zhu LJ, Shukri R, de Mesa-Stonestreet NJ, Alavi S, Dogan H, Shi YC. Mechanical and microstructural properties of soy protein–high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. J Food Eng. 2010;100:232–8.

    Article  CAS  Google Scholar 

  102. Hu Z, Tang X, Zhang M, Hu X, Yu C, Zhu Z, Shao Y. Effects of different extrusion temperatures on extrusion behavior, phenolic acids, antioxidant activity, anthocyanins and phytosterols of black rice. RSC Adv. 2018;8:7123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang R, Khan SA, Chi J, Wei Z, Zhang Y, Deng Y, et al. Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. LWT Food Sci Technol. 2018;88:64–70.

    Article  CAS  Google Scholar 

  104. Ramchiary M, Das AB. Vacuum-assisted extrusion of red rice (bao-dhan) flour: physical and phytochemical comparison with conventional extrusion: J Food Process Preserv. 2020. 44; e14570.

    Google Scholar 

  105. Lu SH, Lin TC. Rice-based snack foods. In: Lusas RW, Rooney LW, editors. Snack foods processing. Boca Raton: CRC Press; 2001. p. 439–55.

    Google Scholar 

  106. Hsieh F, Huff HE, Peng IC, Marek SW. Puffing of rice cakes as influenced by tempering and heating conditions. J Food Sci. 1989;54:1310–2.

    Article  Google Scholar 

  107. Huff HE, Hsieh F, Peng IC. Rice cake production using long-grain and medium-grain brown rice. J Food Sci. 1992;57:1164–7.

    Article  Google Scholar 

  108. Kim JD, Lee JC, Hsieh FH, Eun JB. Rice cake production using black rice and medium-grain brown rice. Food Sci Biotechnol. 2001;10:315–22.

    Google Scholar 

  109. Lee JC, Kim JD, Hsieh FH, Eun JB. Production of black rice cake using ground black rice and medium-grain brown rice. Int J Food Sci Technol. 2008;43:1078–82.

    Article  CAS  Google Scholar 

  110. Fast RB, Perdon AA, Schonauer SL. Breakfast—forms, ingredients, and process flow. In: Perdon AA, Schonauer SL, Poutanen KS, editors. Breakfast cereals and how they are made. St Paul: American Association of Cereal Chemists International; 2020. p. 5–35.

    Chapter  Google Scholar 

  111. Chandrasekhar PR, Chattopadhyay PK. Studies on microstructural changes of parboiled and puffed rice. J Food Process Preserv. 1990;14:27–37.

    Article  Google Scholar 

  112. Mariotti M, Alamprese C, Pagani MA, Lucisano M. Effect of puffing on ultrastructure and physical characteristics of cereal grains and flours. J Cereal Sci. 2006;43:47–56.

    Article  Google Scholar 

  113. Dutta A, Mukherjee R, Gupta A, Ledda A, Chakraborty R. Ultrastructural and physicochemical characteristics of rice under various conditions of puffing. J Food Sci Technol. 2015;52:7037–47.

    Article  CAS  Google Scholar 

  114. Mariotti M, Pagani MA, Lucisano M. The role of buckwheat and HPMC on the breadmaking properties of some commercial gluten-free bread mixtures. Food Hydrocoll. 2013;30:393–400.

    Article  CAS  Google Scholar 

  115. Mir SA, Bosco SJD, Shah MA, Mir MM, Sunooj KV. Process optimization and characterization of popped brown rice. Int J Food Prop. 2016;19:2102–12.

    Article  CAS  Google Scholar 

  116. Jiamjariyatam R, Kongpensook V, Pradipasena P. Effects of amylose content, cooling rate and aging time on properties and characteristics of rice starch gels and puffed products. J Cereal Sci. 2015;61:16–25.

    Article  CAS  Google Scholar 

  117. Joshi ND, Mohapatra D, Joshi DC. Varietal selection of some indica rice for production of puffed rice. Food Bioprocess Technol. 2014;7:299–305.

    Article  CAS  Google Scholar 

  118. Pal S, Bagchi TB, Dhali K, Kar A, Sanghamitra P, Sarkar S, et al. Evaluation of sensory, physicochemical properties and Consumer preference of black rice and their products. J Food Sci Technol. 2019;56:1484–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mir SA, Bosco SJD, Shah MA, Mir MM. Effect of puffing on physical and antioxidant properties of brown rice. Food Chem. 2016;191:139–46.

    Article  CAS  PubMed  Google Scholar 

  120. Abecassis J, Cuq B, Boggini G, Namoune H. Other traditional durum derived products. In: Sissons M, Abecassis J, Marchylo B, Carcea M, editors. Durum wheat: chemistry and technology. St Paul: American Association of Cereal Chemists International; 2012. p. 177–200.

    Google Scholar 

  121. Benatallah L, Agli A, Zidoune MN. Gluten-free couscous preparation: traditional procedure description and technological feasibility for three rice-leguminous supplemented formulae. J Food Agric Environ. 2008;6:105.

    Google Scholar 

  122. Chemache L, Kehal F, Namoune H, Chaalal M, Gagaoua M. Couscous: ethnic making and consumption patterns in the Northeast of Algeria. J Ethnic Foods. 2018;5:211–9.

    Article  Google Scholar 

  123. Bellocq B, Ruiz T, Cuq B. Contribution of cooking and drying to the structure of couscous grains made from durum wheat semolina. Cereal Chem. 2018;95:646–59.

    Article  CAS  Google Scholar 

  124. FAO/WHO. Standard for processed cereal-based foods for infants and young children. 2017; CODEX STAN 74-1981, International.

    Google Scholar 

  125. Jeelani P, Ghai A, Saikia N, Kathed M, Mitra A, Krishnan A, et al. Baby foods based on cereals. In: Gutiérrez TJ, editor. Food science, technology and nutrition for babies and children. Cham: Springer; 2020. p. 59–97.

    Chapter  Google Scholar 

  126. Hojsak I, Braegger C, Bronsky J, Campoy C, Colomb V, Decsi T, et al. Arsenic in rice: a cause for concern. J Pediatr Gastroenterol Nutr. 2015;60:142–5.

    Article  CAS  PubMed  Google Scholar 

  127. European Commission (EU) 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Off J L. 2015;161; 26.6.2015.

    Google Scholar 

  128. European Food Safety Authority Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on arsenic in food. EFSA J. 2009;7:1351.

    Article  Google Scholar 

  129. González N, Calderón J, Rúbies A, Bosch J, Timoner I, Castell V, et al. Dietary exposure to total and inorganic arsenic via rice and rice-based products consumption. Food Chem Toxicol. 2020;141:111420.

    Article  PubMed  CAS  Google Scholar 

  130. Vanga SK, Raghavan V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J Food Sci Technol. 2018;55:10–20.

    Article  CAS  PubMed  Google Scholar 

  131. Munekata PE, Domínguez R, Budaraju S, Roselló-Soto E, Barba FJ, Mallikarjunan K, et al. Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods. 2020;9:288.

    Article  CAS  PubMed Central  Google Scholar 

  132. Silva AR, Silva MM, Ribeiro BD. Health issues and technological aspects of plant-based alternative milk. Food Res Int. 2020;131:108972.

    Article  CAS  PubMed  Google Scholar 

  133. Mäkinen OE, Wanhalinna V, Zannini E, Arendt EK. Foods for special dietary needs: non-dairy plant-based milk substitutes and fermented dairy-type products. Crit Rev Food Sci Nutr. 2016;56:339–49.

    Article  PubMed  CAS  Google Scholar 

  134. Lichtenstein AH, Ausman LM, Carrasco W, Gualtieri LJ, Jenner JL, Ordovas JM, et al. Rice bran oil consumption and plasma lipid levels in moderately hypercholesterolemic humans. Arterioscler Thromb. 1994;14:549–56.

    Article  CAS  PubMed  Google Scholar 

  135. Sugano M, Tsuji E. Rice bran oil and cholesterol metabolism. J Nutr. 1997;127:521S–4S.

    Article  CAS  PubMed  Google Scholar 

  136. Patel M, Naik SN. Gamma-oryzanol from rice bran oil–a review. J Sci Ind Res. 2004;63:569–78.

    CAS  Google Scholar 

  137. Danielski L, Zetzl C, Hense H, Brunner G. A process line for the production of raffinated rice oil from rice bran. J Supercrit Fluids. 2005;34:133–41.

    Article  CAS  Google Scholar 

  138. Godber JS. Rice bran oil. In: Moreau RA, Kamal-Eldin A, editors. Gourmet and health-promoting specialty oils. Urbana: AOCS Press; 2009. p. 377–408.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Marti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bresciani, A., Pagani, M.A., Marti, A. (2021). Rice: A Versatile Food at the Heart of the Mediterranean Diet. In: Boukid, F. (eds) Cereal-Based Foodstuffs: The Backbone of Mediterranean Cuisine. Springer, Cham. https://doi.org/10.1007/978-3-030-69228-5_8

Download citation

Publish with us

Policies and ethics