Skip to main content

Abstract

The terahertz imaging systems are broadly classified as: (1) far-field imaging systems and (2) near-field imaging systems. As per the salient features of these two types of imaging systems, both the systems have been explored and utilized by researchers in several imaging applications. This chapter explores the terahertz near-field imaging and sensing. Recent advances of the near-field imaging techniques with its measurement techniques are discussed and an analytical estimate based on Kirchhoff’s formalism for near-field is presented. The imaging systems are based on either near-field or far-field set-up depending upon the application. The terahertz near-field imaging approach provides time and spatially resolved measurements of the electric field distribution in the vicinity of structured samples with subwavelength spatial resolution. The state-of-the-art measurement techniques of near-field imaging are in progress for several application areas. Using the Kirchhoff formalism, the near-field enhancement can be estimated from the far-field measurements and is analytically discussed. The practical implementations of metasurface or slits or holes hold promise for near-field terahertz beam steering, laser-based microscopy, non-contact sensing, imaging, and lithography applications. Moreover, the terahertz field enhancements would trigger various future investigations such as terahertz nonlinearity measurement, terahertz controlled nano-optics devices, and single-molecule detection using terahertz waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007)

    Article  Google Scholar 

  2. A.J.L. Adam, Review of near-field terahertz measurement methods and their applications. J. Infrared Millimeter Terahertz Waves 32(8–9), 976–1019 (2011)

    Article  Google Scholar 

  3. J.W. Goodman, Introduction to Fourier Optics, 2nd. edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  4. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, UK, Dec. 2019)

    Book  MATH  Google Scholar 

  5. J.B. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin/Heidelberg, 2006)

    Book  Google Scholar 

  6. T. Yuan, Z. Xu, X.C. Zhang, Development of terahertz wave microscopes. Infrared Phys Technol 45, 417–425 (2004)

    Article  Google Scholar 

  7. F. Blanchard, A. Doi, T. Tanaka, K. Tanaka, Real-time, subwavelength terahertz imaging. Ann. Rev. Mater. Res 43, 237–259 (2013)

    Article  Google Scholar 

  8. B.B. Hu, M.C. Nuss, Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1718 (1995)

    Article  Google Scholar 

  9. J. Liu, J. An, R. Zhou, Y. Yang, Terahertz near-field MIMO-SAR technology for human security inspection. J. Opto-Electron. Eng 47(5), 190682/1–11 (2020)

    Google Scholar 

  10. D. Yan, H. Zhang, D. Xu, W. Shi, C. Yan, P. Liu, J. Shi, J. Yao, Numerical study of compact terahertz gas laser based on photonic crystal fiber cavity. J. Lightwave Technol. 34(14), 3373–3378 (2016)

    Article  Google Scholar 

  11. P. Klarskov, H. Kim, V.L. Colvin, D.M. Mittleman, Nanoscale laser terahertz emission microscopy. ACS Photonics 4, 2676–2680 (2017)

    Article  Google Scholar 

  12. S.C. Chen, L.H. Du, K. Meng, J. Li, Z.H. Zhai, Q.W. Hi, Z.R. Li, L.G. Zhu, Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100. Opt. Lett. 44, 21–24 (2019)

    Article  Google Scholar 

  13. K. Moon, P. Hongkyu, J. Kim, Y. Do, S. Lee, G. Lee, H. Kang, H. Han, Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett. 15(1), 549–552 (2015)

    Article  Google Scholar 

  14. H. Chen, S.H. Ma, X. Wu, W. Yang, T. Zhao, Diagnose human colonic tissues by terahertz near-field imaging. J. Biomed. Opt. 20(3), 036017/1–036017/5 (2015)

    Article  Google Scholar 

  15. L. Mavarani, P. Hillger, T. Bucher, J. Grzyb, U.R. Pfeiffer, Q. Cassar, A. Al-Ibadi, T. Zimmer, J.P. Guillet, P. Mounaix, G. MacGrogan, Near sense- advances towards a silicon-based terahertz near-field imaging sensor for Ex vivo breast tumour identification. Frequenz 72(3–4), 1–7 (2018)

    Google Scholar 

  16. P. Alonso-Gonzalez, A.Y. Nikintin, Y. Gao, A. Woessner, M.B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Velez, A.J. Huber, K. Watanabe, Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12(1), 31–35 (2017)

    Article  Google Scholar 

  17. N. Wang, X. Zhang, J. Liang, T. Chang, H. L. Cui, Novel configuration of aperture-type terahertz near-field imaging probe. Journal of Physics D: Applied Physics 53, 295102/1–8 (2020)

    Google Scholar 

  18. F.Y. Han, P.K. Liu, Terahertz near-field metasurfaces : Amplitude-phase combined steering and electromagnetostatic dual-field superfocusing. Adv. Opt. Mater 8(6), 1901331/1–12 (2020)

    Article  Google Scholar 

  19. J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, J. Yao, Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34–42 (2020)

    Article  Google Scholar 

  20. Y. Fang, A. Armin, P. Meredith, J. Huang, Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 13(1), 1–4 (2019)

    Article  Google Scholar 

  21. N.C.J. Vandr Valk, P.C.M. Planken, Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip. Appl. Phys. Lett. 81(9), 1558/1–1558/3 (2002)

    Google Scholar 

  22. H.T. Chen, W.J. Padilla, J.M. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006)

    Article  Google Scholar 

  23. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications-explosives, weapons and drugs. Semicond. Sci Technol 20(7), S266–S280 (2005)

    Article  Google Scholar 

  24. X. Yang, Z. Tian, X. Chen, M. Hu, Z. Yi, C. Ouyang, J. Gu, J. Han, W. Zhang, Terahertz ingle-pixel near-field imaging based on active tuneable subwavelength metallic grating. Appl. Phys. Lett. 116, 241106 1–4 (2020)

    Article  Google Scholar 

  25. H.T. Chen, R. Kersting, G.C. Cho, Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83(15), 3009–3011 (2013)

    Article  Google Scholar 

  26. K. Wang, D.M. Mittleman, N.C.J. Van Der Valk, P.C.M. Planken, Antenna effects in terahertz apertureless near-field optical microscopy. Appl. Phys. Lett. 85(14), 2715–2717 (2004)

    Article  Google Scholar 

  27. G. Dai, G. Geng, X. Zhang, J. Wang, T. Chang, H.L. Cui, W-band near-field microscope. IEEE Access 7(16), 48060–48067 (2019)

    Article  Google Scholar 

  28. P. Alonso-Gonzalez, A.Y. Nikitin, Y. Gao, A. Woessner, M.B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Velez, A.J. Huber, K. Watanabe, Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12(1), 31–35 (2017)

    Article  Google Scholar 

  29. H.G. von Ribbeck, M. Brehm, D.W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, F. Keilmann, Spectroscopic THz near-field microscope. Opt. Express 16(5), 3430–3438 (2008)

    Article  Google Scholar 

  30. A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand, Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8(11), 3766–3770 (2008)

    Article  Google Scholar 

  31. F. Kuschewski, H.G. Von Ribbeck, J. Döring, S. Winnerl, L.M. Eng, S.C. Kehr, Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz. Appl. Phys. Lett 108(11), 113102/1–113102/3 (2016)

    Article  Google Scholar 

  32. H.T. Stinson, A. Sternbach, O. Najera, R. Jing, A.S. Mcleod, T.V. Slusar, A. Mueller, L. Anderegg, H.T. Kim, M. Rozenberg, D.N. Basov, Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9(1), 3604/1–3604/9 (2018)

    Article  Google Scholar 

  33. J. Zhang, X. Chen, S. Mills, T. Ciavatti, Z. Yao, R. Mescall, H. Hu, V. Semenenko, Z. Fei, H. Li, V. Perebeino, Terahertz nanoimaging of graphene. ACS Photonics 5(7), 2645–2651 (2018)

    Article  Google Scholar 

  34. C. Liewald, S. Mastel, J. Hesler, A.J. Huber, R. Hillenbrand, F. Keilmann, All-electronic terahertz nanoscopy. Optica 5(2), 159–163 (2018)

    Article  Google Scholar 

  35. M.C. Giordano, S. Mastel, C. Liewald, L.L. Columbo, M. Brambilla, L. Viti, A. Politano, K. Zhang, L. Li, A.G. Davies, E.H. Linfield, Phase-resolved terahertz self-detection near-field microscopy. Opt. Express 26(14), 18423–28435 (2018)

    Article  Google Scholar 

  36. X. Chen, X. Liu, X. Guo, S. Chen, H. Hu, E. Nikulina, X. Ye, Z. Yao, H.A. Bechtel, M.C. Martin, G.L. Carr, Q. Dai, S. Zhuang, Q. Hu, Y. Zhu, R. Hillenbrand, M. Liu, G. You, THz near-field imaging of extreme subwavelength metal structures. ACS Photonics 7, 687–694 (2020)

    Article  Google Scholar 

  37. S. Ducourtieux, S. Gresillon, J.C. Rivoal, C. Vannier, C. Bainier, D. Courjon, H. Cory, Imaging subwavelength holes in chromium films in scanning near-field optical microscopy: Comparison between experiments and calculation. Eur. Phys. J. Appl. Phys. 26(1), 35–43 (2004)

    Article  Google Scholar 

  38. M.A. Seo, A.J.L. Adam, J.H. Kang, J.W. Lee, K.J. Ahn, Q.H. Park, P.C.M. Planken, D.S. Kim, Near field imaging of terahertz focusing onto rectangular apertures. Opt. Express 16, 20484–20489 (2008)

    Article  Google Scholar 

  39. O. Mitrofanov, M. Lee, J.W.P. Hsu, L.N. Pfeiffer, K.W. West, J.D. Wynn, J.F. Federici, Terahertz pulse propagation through small apertures. Appl. Phys. Lett. 79, 907–909 (2001)

    Article  Google Scholar 

  40. A. Bitzer, M. Walther, Terahertz near-field imaging of metallic subwavelength holes and hole arrays. Appl. Phys. Lett 92, 231101/1–231101/3 (2008)

    Article  Google Scholar 

  41. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, M. Walther, Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Opt. Express 17, 3826–3834 (2009)

    Article  Google Scholar 

  42. A.J.L. Adam, J.M. Brok, M.A. Seo, K.J. Ahn, D.S. Kim, J.H. Kang, Q.H. Park, M. Nagel, P.C.M. Planken, Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures. Opt. Express 16, 7407–7417 (2008)

    Article  Google Scholar 

  43. M. Mrejen, A. Israel, H. Taha, M. Palchan, A. Lewis, Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays. Opt. Express 15, 9129–9138 (2007)

    Article  Google Scholar 

  44. H. Gao, J. Henzie, T.W. Odom, Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 6, 2104–2108 (2006)

    Article  Google Scholar 

  45. S.C. Hohng, Y.C. Yoon, D.S. Kim, V. Malyarchuk, R. Muller, Ch. Lienau, J.W. Park, K.H. Yoo, J. Kim, H.Y. Ryu, Q.H. Park, Light emission from the shadows: Surface plasmon nano-optics at near and far fields. Appl. Phys. Lett. 81, 3239–3241 (2002)

    Article  Google Scholar 

  46. J. R. Knab, A. J. L.Adam, M. Nagel, E. Shaner, .A. Seo, D. S. Kim and P. C. M. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays”, Opt. Express, vol. 17, no. 17, pp. 15072–15086, 2009

    Article  Google Scholar 

  47. G. Zhao, R.N. Schouten, N.C.J. van der Valk, W.T. Wenckebach, P.C.M. Planken, Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter. Rev. Sci. Instrum. 73, 1715–1719 (2002)

    Article  Google Scholar 

  48. R. Chakkittakandy, J.A. Corver, P.C.M. Planken, Quasi-near field terahertz generation and detection. Opt. Express 16, 12794–12805 (2008)

    Article  Google Scholar 

  49. C.-C. Chen, Transmission of microwave through perforated flat plates of finite thickness. IEEE Trans. Microwave Theory Technol MTT-21, 1–6 (1973)

    Article  Google Scholar 

  50. R. Ulrich, M. Tacke, Submillimeter waveguiding on periodic metal structure. Appl. Phys. Lett. 22, 251–253 (1973)

    Article  Google Scholar 

  51. A. Mitsuishi, Y. Otsuka, S. Fujita, H. Yoshinaga, Metal mesh filters in the far infrared region. Jpn. J. Appl. Phys. 2, 574–577 (1963)

    Article  Google Scholar 

  52. C.-C. Chen, Transmission through a conducting screen perforated periodically with apertures. IEEE Trans. Microwave Theory Technol MTT-18, 627–632 (1970)

    Article  Google Scholar 

  53. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, H. Kurz, Enhanced transmission of THz radiation through subwavelength holes. Phys. Rev. B 68, 201306 (2003)

    Article  Google Scholar 

  54. C.J. Bouwkamp, Diffraction theory. Rep. Prog. Phys. 17, 35 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  55. I. Sersic, M. Frimmer, E. Verhagen, A.F. Koenderink, Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. Phys. Rev. Lett. 103(21), 213902/1–213902/3 (2009)

    Article  Google Scholar 

  56. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009)

    Article  Google Scholar 

  57. R.L. Olmon, M. Rang, P.M. Krenz, B.A. Lail, L.V. Saraf, G.D. Boreman, M.B. Raschke, Determination of electric-field, magnetic-field and electric-current distributions of infrared optical antennas: A near-field optical vector network analyser. Phys. Rev. Lett. 105(16), 167403/1–167403/3 (2010)

    Article  Google Scholar 

  58. H.W. Kihm, S.M. Koo, Q.H. Kim, K. Bao, J.E. Kihm, W.S. Bak, S.H. Eah, C. Lienau, H. Kim, P. Nordlander, N.J. Halas, N.K. Park, D.-S. Kim, Bethe-hole polarization analyser for the magnetic vector of light. Nat. Commun. 2(1), 1–6 (2011)

    Article  Google Scholar 

  59. T.H. Taminiau, S. Karaveli, N.F. van Hulst, R. Zia, Quantifying the magnetic nature of light emission. Nat. Commun. 3(1), 979/1–979/6 (2012)

    Article  Google Scholar 

  60. I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7(9), 7824–7832 (2013)

    Article  Google Scholar 

  61. S. Person, M. Jain, Z. Lapin, J.J. Saenz, G. Wicks, L. Novotny, Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13(4), 1806–1809 (2013)

    Article  Google Scholar 

  62. Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Lukyanchuk, Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4(1), 1527/1–1527/6 (2013)

    Article  Google Scholar 

  63. N. Rotenberg, M. Spasenovic, T.L. Krijger, B. le Feber, F. J. Garc’ıa de Abajo, and L. Kuipers, “Directional visible light scattering by silicon nanoparticles”. Phys. Rev. Lett. 108, 127402/1–127402/3 (2012)

    Google Scholar 

  64. J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martın-Moreno, T.W. Ebbesen, Diffraction regimes of single holes. Phys. Rev. Lett. 109(2), 023901/1–023901/3 (2012)

    Article  Google Scholar 

  65. N. Rotenberg, T.L. Krijger, B. le Feber, M. Spasenovic, F.J.G. de Abajo, L. Kuipers, Magnetic and electric response of single wavelength holes. Phys. Rev. B 88, 241408/1–241408/5 (2013)

    Article  Google Scholar 

  66. F. Lopez-Tejeira, S.G. Rodrigo, L. Mart’ın-Moreno, F.J. Garcıa-Vidal, E. Devaux, T.W. Ebbesen, J.R. Krenn, I.P. Radko, S.I. Bozhevolnyi, M.U. Gonzalez, J.C. Weeber, A. Dereux, Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys. 3(5), 324–328 (2007)

    Article  Google Scholar 

  67. M. Sandtke, R.J.P. Engelen, H. Schoenmaker, I. Attema, H. Dekker, I. Cerjak, J.P. Korterik, F.B. Segerink, L. Kuipers, Novel instruments for surface plasmon polariton tracking in space and time. Rev. Sci. Instrum. 79(1), 013704/1–11 (2008)

    Article  Google Scholar 

  68. D.V. Permyakv, I.S. Mukhin, I.I. Shishkin, A.K. Samusev, P.A. Belov, Y.S. Kivshar, Mapping electromagnetic fields near subwavelength hole. JETP Lett. 99(11), 722–726 (2014)

    Google Scholar 

  69. D.R. Grischkowsky, Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy. J. Sel. Top. Quantum Electron 6(6), 1122–1135 (2000)

    Article  Google Scholar 

  70. C. Genet, T.W. Ebbesen, Light in tiny holes, in Nanoscience and Technology: A Collection of Reviews from Nature Journal, ed. by P. Rodgers, (World Scientic Publication, Singapore, 2009), pp. 205–212

    Chapter  Google Scholar 

  71. E. Popov, M. Nevière, S. Enoch, R. Reinisch, Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B 62(23), 16100/1–16100/9 (2000)

    Article  Google Scholar 

  72. W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Surface plasmon plaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401/1–107401/3 (2004)

    Article  Google Scholar 

  73. J.W. Lee, M.A. Seo, D.H. Kang, K.S. Khim, S.C. Jeoung, D.S. Kim, Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets. Phys. Rev. Lett. 99(13), 137401/1–137401/3 (2007)

    Article  Google Scholar 

  74. K.J.K. Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength hole. Phys. Rev. Lett. 92, 183901/1–183901/4 (2004)

    Article  Google Scholar 

  75. K.L. Van der Molen, K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. Van Hulst, L. Kuipers, Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory. Phys. Rev. B 72, 045421/1–045421/9 (2005)

    Google Scholar 

  76. H. Cao, A. Nahata, Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. Opt. Express 12(16), 3664/1–3664/9 (2004)

    Article  Google Scholar 

  77. F.J. García-Vidal, E. Moreno, J.A. Porto, L. Martín-Moreno, Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95(10), 103901/1–103901/3 (2005)

    Article  Google Scholar 

  78. M.A. Seo, H.R. Park, S.M. Koo, D.J. Park, J.H. Kang, O.K. Suwal, S.S. Choi, P.C.M. Planken, G.S. Park, N.K. Park, Q.H. Park, D.S. Kim, Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photonics 3(3), 152–156 (2009)

    Article  Google Scholar 

  79. A.J.L. Adam, J.M. Brok, P.C.M. Planken, M.A. Seo, D.S. Kim, THz near-field measurements of metal structures. C. R. Physique 9(2), 161–168 (2008)

    Article  Google Scholar 

  80. J.H. Kang, J.-H. Choe, D.S. Kim, Q.H. Park, Substrate effect on aperture resonances in a thin metal film. Opt. Express 17(18), 15652–15658 (2009)

    Article  Google Scholar 

  81. L. Guestin, A.J.L. Adam, J.R. Knab, M. Nagel, P.C.M. Planken, Influence of the dielectric substrate on the terahertz electric near-field of a hole in a metal. Opt. Express 17(20), 17412–17425 (2009)

    Article  Google Scholar 

  82. D.J. Park, S.B. Choi, Y.H. Ahn, F. Rotermund, I.B. Sohn, C. Kang, M.S. Jeong, D.S. Kim, Terahertz near-field enhancement in narrow rectangular apertures on metal film. Opt. Express 17(15), 12493–12501 (2009)

    Article  Google Scholar 

  83. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge UK, 1999)

    Book  MATH  Google Scholar 

  84. J.S. Kyoung, M.A. Seo, H.R. Park, K.J. Ahn, D.S. Kim, Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism. Opt. Commun. 283, 4907–4910 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malhotra, I., Singh, G. (2021). Terahertz Near-Field Imaging and Sensing. In: Terahertz Antenna Technology for Imaging and Sensing Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-68960-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68960-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68959-9

  • Online ISBN: 978-3-030-68960-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics