Skip to main content

Learning Topology: Bridging Computational Topology and Machine Learning

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Topology is a classical branch of mathematics, born essentially from Euler’s studies in the XVII century, which deals with the abstract notion of shape and geometry. Last decades were characterised by a renewed interest in topology and topology-based tools, due to the birth of computational topology and Topological Data Analysis (TDA). A large and novel family of methods and algorithms computing topological features and descriptors (e.g. persistent homology) have proved to be effective tools for the analysis of graphs, 3d objects, 2D images, and even heterogeneous datasets. This survey is intended to be a concise but complete compendium that, offering the essential basic references, allows you to orient yourself among the recent advances in TDA and its applications, with an eye to those related to machine learning and deep learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(1), 218–252 (2017)

    MathSciNet  Google Scholar 

  2. Adams, H., Tausz, A., Vejdemo-Johansson, M.: javaPlex: a research software package for persistent (co)homology. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 129–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_23

    Chapter  MATH  Google Scholar 

  3. Barsocchi, P., Cassará, P., Giorgi, D., Moroni, D., Pascali, M.: Computational topology to monitor human occupancy. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 99 (2018)

    Google Scholar 

  4. Bauer, U., Kerber, M., Reininghaus, J.: Dipha (a distributed persistent homology algorithm). Software available at (2014). https://github.com/DIPHA/dipha

  5. Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: Phat-persistent homology algorithms toolbox. J. Symbol. Comput. 78, 76–90 (2017)

    Article  MathSciNet  Google Scholar 

  6. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imag. Vis. 32(2) 161 (2008)

    Google Scholar 

  7. Bowman, G., et al.: Structural insight into RNA hairpin folding intermediates. J. Am. Chem. Soc. 130(30), 9676–9678 (2008)

    Article  Google Scholar 

  8. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(3), 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vision 76, 1–12 (2008)

    Article  MathSciNet  Google Scholar 

  10. Carlsson, G.: Topology and data. Bull. Amer. Math. Soc. 46, 255–308 (2009)

    Article  MathSciNet  Google Scholar 

  11. Carlsson, G., De Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4), 367–405 (2010)

    Article  MathSciNet  Google Scholar 

  12. Carlsson, G., Gabrielsson, R.B.: Topological approaches to deep learning. In: Baas, N.A., Carlsson, G.E., Quick, G., Szymik, M., Thaule, M. (eds.) Topological Data Analysis, pp. 119–146. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  13. Carrière, M., Cuturi, M., Oudot, S.: Sliced wasserstein kernel for persistence diagrams. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70. p. 664–673. ICML 2017, JMLR.org (2017)

    Google Scholar 

  14. Carriére, M., Oudot, S.Y., Ovsjanikov, M.: Stable topological signatures for points on 3d shapes. Comput. Graph. Forum 34(5), 1–12 (2015)

    Article  Google Scholar 

  15. Carrière, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M., Umeda, Y.: Perslay: A neural network layer for persistence diagrams and new graph topological signatures (2020)

    Google Scholar 

  16. Cerri, A., Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36, 1543–1557 (2013)

    Article  MathSciNet  Google Scholar 

  17. Cerri, A., Ferri, M., Giorgi, D.: Retrieval of trademark images by means of size functions. Graph. Models 68(5), 451–471 (2006)

    Article  Google Scholar 

  18. Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. Proc. Natl. Acad. Sci. 110(46), 18566–18571 (2013)

    Article  MathSciNet  Google Scholar 

  19. Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L.: Stochastic convergence of persistence landscapes and silhouettes. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 474–483. SOCG 2014, Association for Computing Machinery, New York, USA (2014)

    Google Scholar 

  20. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds. J. ACM, 60(6) (2013)

    Google Scholar 

  21. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr. Comput. Geom. 37, 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  22. Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Proceedings of the Twenty-second Annual Symposium On Computational Geometry, pp. 119–126 (2006)

    Google Scholar 

  23. De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co) homology. Inverse Prob. 27(12), 124003 (2011)

    Article  MathSciNet  Google Scholar 

  24. Dey, T.K., Shi, D., Wang, Y.: SimBa: an efficient tool for approximating Rips-filtration persistence via simplicial batch collapse. J. Exp. Algorithmics 24(1), 1–6 (2019)

    Article  MathSciNet  Google Scholar 

  25. Di Fabio, B., Ferri, M.: Comparing persistence diagrams through complex vectors. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 294–305. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23231-7_27

    Chapter  Google Scholar 

  26. Dindin, M., Umeda, Y., Chazal, F.: Topological data analysis for arrhythmia detection through modular neural networks. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 177–188. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_17

    Chapter  Google Scholar 

  27. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)

    Google Scholar 

  28. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discr. Comput. Geom. 28, 511–533 (2002)

    Article  MathSciNet  Google Scholar 

  29. Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the r package tda. arXiv preprint arXiv:1411.1830 (2014)

  30. Frosini, P.: A distance for similarity classes of submanifolds of a euclidean space. Bull. Australian Math. Soc. 42(3), 407–416 (1990)

    Article  MathSciNet  Google Scholar 

  31. Frosini, P.: Discrete computation of size functions. J. Comb. Inf. Syst. Sci. 17(3–4), 232–250 (1992)

    MathSciNet  MATH  Google Scholar 

  32. Frosini, P.: Measuring shapes by size functions. In: Casasent, D.P. (ed.) Intelligent Robots and Computer Vision X: Algorithms and Techniques, vol. 1607, pp. 122–133. International Society for Optics and Photonics, SPIE (1992)

    Chapter  Google Scholar 

  33. Gabrielsson, R.B., Nelson, B.J., Dwaraknath, A., Skraba, P.: A topology layer for machine learning. In: Chiappa, S., Calandra, R. (eds.) Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 108, pp. 1553–1563. PMLR (2020)

    Google Scholar 

  34. Gamble, J., Heo, G.: Exploring uses of persistent homology for statistical analysis of landmark-based shape data. J. Multi. Anal. 101(9), 2184–2199 (2010)

    Article  MathSciNet  Google Scholar 

  35. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  Google Scholar 

  36. Gidea, M., Katz, Y.: Topological data analysis of financial time series: landscapes of crashes. Phys. A 491, 820–834 (2018)

    Article  MathSciNet  Google Scholar 

  37. Guss, W.H., Salakhutdinov, R.: On characterizing the capacity of neural networks using algebraic topology. CoRR abs/1802.04443 (2018)

    Google Scholar 

  38. Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  39. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, p. 1633–1643. NIPS 2017, Curran Associates Inc., Red Hook, NY, USA (2017)

    Google Scholar 

  40. Hofer, C.D., Kwitt, R., Niethammer, M.: Learning representations of persistence barcodes. J. Mach. Learn. Res. 20(126), 1–45 (2019). http://jmlr.org/papers/v20/18-358.html

  41. Horak, D., Maletić, S., Rajković, M.: Persistent homology of complex networks. J. Stat. Mech: Theory Exp. 2009(03), P03034 (2009)

    Article  MathSciNet  Google Scholar 

  42. Ichinomiya, T., Obayashi, I., Hiraoka, Y.: Protein-folding analysis using features obtained by persistent homology. Biophys. J. 118(12), 2926–2937 (2020)

    Article  Google Scholar 

  43. Kim, K., Kim, J., Zaheer, M., Kim, J.S., Chazal, F., Wasserman, L.: Pllay: Efficient topological layer based on persistence landscapes (2020)

    Google Scholar 

  44. Kusano, G., Fukumizu, K., Hiraoka, Y.: Persistence weighted gaussian kernel for topological data analysis. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning. vol. 48, pp. 2004–2013. ICML 2016, JMLR.org (2016)

    Google Scholar 

  45. Le, T., Yamada, M.: Persistence fisher kernel: A riemannian manifold kernel for persistence diagrams. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 10028–10039. NIPS 2018, Curran Associates Inc., Red Hook, NY, USA (2018)

    Google Scholar 

  46. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2003–2010 (2014)

    Google Scholar 

  47. Maria, C., Boissonnat, J.-D., Glisse, M., Yvinec, M.: The Gudhi Library: Simplicial Complexes and Persistent Homology. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 167–174. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_28

    Chapter  Google Scholar 

  48. Masood, T.B., et al.: An overview of the topology toolkit. In: TopoInVis 2019-Topological Methods in Data Analysis and Visualization (2019)

    Google Scholar 

  49. Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discr. Comput. Geom. 50(2), 330–353 (2013)

    Article  MathSciNet  Google Scholar 

  50. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)

    Article  Google Scholar 

  51. Morozov, D.: Dionysus, a c++ library for computing persistent homology. https://www.mrzv.org/software/dionysus/ (2007)

  52. Naitzat, G., Zhitnikov, A., Lim, L.H.: Topology of deep neural networks. J. Mach. Learn. Res. 21(184), 1–40 (2020)

    Google Scholar 

  53. Nanda, V.: Perseus: the persistent homology software. Software available at http://www.sas.upenn.edu/vnanda/perseus (2012)

  54. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017)

    Article  Google Scholar 

  55. Pereira, C.M., de Mello, R.F.: Persistent homology for time series and spatial data clustering. Expert Syst. Appl. 42(15), 6026–6038 (2015)

    Article  Google Scholar 

  56. Petri, G., Scolamiero, M., Donato, I., Vaccarino, F.: Topological strata of weighted complex networks. PLoS ONE 8(6), 1–8 (2013)

    Article  Google Scholar 

  57. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4741–4748 (2015)

    Google Scholar 

  58. Rieck, B., et al.: Neural persistence: a complexity measure for deep neural networks using algebraic topology. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  59. Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  60. Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.: Topological analysis of population activity in visual cortex. J. Vis. 8(8), 1–18 (2008)

    Article  Google Scholar 

  61. Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 45–52 (2010)

    Google Scholar 

  62. Som, A., Choi, H., Ramamurthy, K.N., Buman, M.P., Turaga, P.: Pi-net: a deep learning approach to extract topological persistence images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)

    Google Scholar 

  63. Turner, K., Mukherjee, S., Boyer, D.: Persistent homology transform for modeling shapes and surfaces. Inf. Inf. A J. IMA 3(4), 310–344 (2014)

    MathSciNet  MATH  Google Scholar 

  64. Umeda, Y.: Time series classification via topological data analysis. Trans. Japanese Soc. Artif. Intell. 32(3), D-G72\(_{1}\)- -12 (2017)

    Google Scholar 

  65. Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape analysis. Biol. Cybern. 70, 99–107 (1993)

    Article  Google Scholar 

  66. Xia, K., Wei, G.: Persistent homology analysis of protein structure, flexibility, and folding. Int. J. Numer. Method Biomed. Eng. 30(8), 814–844 (2014)

    Article  MathSciNet  Google Scholar 

  67. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 457–469 (2017)

    Article  Google Scholar 

  68. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discr. Comput. Geom. 3, 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonietta Pascali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moroni, D., Pascali, M.A. (2021). Learning Topology: Bridging Computational Topology and Machine Learning. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12665. Springer, Cham. https://doi.org/10.1007/978-3-030-68821-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68821-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68820-2

  • Online ISBN: 978-3-030-68821-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics