Skip to main content

Removal of Floating Particles from Underwater Images Using Image Transformation Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12662))

Abstract

In this paper, we propose three methods for removing floating particles from underwater images. The first two methods are based on Generative Adversarial Networks (GANs). The first method uses CycleGAN which can be trained with an unpaired dataset, and the second method uses pix2pixHD that is trained with a paired dataset created by adding artificial particles to underwater images. The third method consists of two-step process – particle detection and image inpainting. For particle detection, an image segmentation neural network U-Net is trained by using underwater images added with artificial particles. Using the output of U-Net, the particle regions are repaired by an image inpainting network Partial Convolutions. The experimental results showed that the methods using GANs were able to remove floating particles, but the resolution became lower than that of the original images. On the other hand, the results of the method using U-Net and Partial Convolutions showed that it is capable of accurate detection and removal of floating particles without loss of resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee, H.S., Moon, S.W., Eom, I.K.: Underwater image enhancement using successive color correction and superpixel dark channel prior. Symmetry 12(8), 1220 (2020)

    Article  Google Scholar 

  2. Yeh, C.H., Huang, C.H., Lin, C.H.: Deep learning underwater image color correction and contrast enhancement based on hue preservation. In: 2019 IEEE Underwater Technology (UT), pp. 1–6 (2019)

    Google Scholar 

  3. Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)

    Google Scholar 

  4. Zhang, S., Wang, T., Dong, J., Yu, H.: Underwater image enhancement via extended multi-scale Retinex. Neurocomputing, 245, 1–9 (2017)

    Google Scholar 

  5. Zhang, M., Peng, J.: Underwater image restoration based on a new underwater image formation model. IEEE Access, 58634–58644 (2018)

    Google Scholar 

  6. Li, C., Guo, J., Chen, S., Tang, Y., Pang, Y., Wang, J.: Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1993–1997 (2016)

    Google Scholar 

  7. Li, C.Y., Guo, J.C., Cong, R.M., Pang, Y.W., Wang, B.: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 25(12), 5664–5677 (2016)

    Article  MathSciNet  Google Scholar 

  8. Hou, G., Li, J., Wang, G., Pan, Z., Zhao, X.: Underwater image dehazing and denoising via curvature variation regularization. Multimedia Tools Appl. 79(27), 20199–20219 (2020)

    Article  Google Scholar 

  9. Hao, Z., You, S., Li, Y., Li, K., Lu, F.: Learning from synthetic photorealistic raindrop for single image raindrop removal. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, p. 0 (2019)

    Google Scholar 

  10. Luo, W., Lai, J., Xie, X.: Weakly supervised learning for raindrop removal on a single image. IEEE Trans. Circuits Syst. Video Technol. (2020)

    Google Scholar 

  11. Lin, J., Dai, L.: X-net for single image raindrop removal. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1003–1007 (2020)

    Google Scholar 

  12. Li, Z., et al.: Single image snow removal via composition generative adversarial networks. IEEE Access 7, 25016–25025 (2019)

    Article  Google Scholar 

  13. Huang, S.C., Jaw, D.W., Chen, B.H., Kuo, S.Y.: Single image snow removal using sparse representation and particle swarm optimizer. ACM Transa. Intell. Syst. Technol. (TIST) 11(2), 1–15 (2020)

    Article  Google Scholar 

  14. Patel, K.F., Tatariw, C., MacRae, J.D., Ohno, T., Nelson, S.J., Fernandez, I.J.: Soil carbon and nitrogen responses to snow removal and concrete frost in a northern coniferous forest. Can. J. Soil Sci. 98(3), 436–447 (2018)

    Article  Google Scholar 

  15. Jiang, Q., Chen, Y., Wang, G., Ji, T.: A novel deep neural network for noise removal from underwater image. Signal Process. Image Commun. 87, 115921 (2020)

    Article  Google Scholar 

  16. Koziarski, M., Cyganek, B.: Marine snow removal using a fully convolutional 3D neural network combined with an adaptive median filter. In: Zhang, Z., Suter, D., Tian, Y., Branzan Albu, A., Sidère, N., Jair Escalante, H. (eds.) ICPR 2018. LNCS, vol. 11188, pp. 16–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05792-3_2

    Chapter  MATH  Google Scholar 

  17. Zhu, J.Y., Park, T., Isola, P., Efros, A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2018)

    Google Scholar 

  18. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Komuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Komuro, T., Enomoto, K., Toda, M. (2021). Removal of Floating Particles from Underwater Images Using Image Transformation Networks. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12662. Springer, Cham. https://doi.org/10.1007/978-3-030-68790-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68790-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68789-2

  • Online ISBN: 978-3-030-68790-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics