Skip to main content

Green’s Functions and Euler’s Formula for \(\zeta (2n)\)

  • Conference paper
  • First Online:
Schrödinger Operators, Spectral Analysis and Number Theory

Abstract

In this note, we calculate the Green’s function for the linear operator \((- \Delta _D)^n,\) where \(- \Delta _D\) is the one-dimensional Dirichlet Laplacian in \(L^2((0,1); dx)\) defined by

$$\begin{aligned} - \Delta _D f=-f^{\prime \prime } \end{aligned}$$

with (Dirichlet) boundary conditions \(f(0)=f(1)=0.\) As a consequence of this computation, we obtain Euler’s formula

$$\begin{aligned} \zeta (2n) = \sum _{k \in {\mathbb {N}}} k^{-2n} = \dfrac{(-1)^{n-1}2^{2n-1}\pi ^{2n}B_{2n}}{(2n)!}, \quad n\in {\mathbb {N}}, \end{aligned}$$

where \(\zeta (\cdot )\) denotes the Riemann zeta function and \(B_{n}\) is the nth Bernoulli number. This generalizes the example given by Grieser [29] for \(n=1.\) In addition, we derive its z-dependent generalization for \(z \in {\mathbb {C}}\backslash \big \{(k \pi )^{2n}\big \}_{k \in {\mathbb {N}}}\),

$$\begin{aligned} \sum _{k \in {\mathbb {N}}} \big [(k\pi )^{2n} - z\big ]^{-1} = \frac{1}{2n z}\bigg [n - \sum _{j=0}^{n-1} \omega _j^{1/2} z^{1/(2n)} \cot \big (\omega _j^{1/2} z^{1/(2n)}\big )\bigg ], \quad n\in {\mathbb {N}}, \end{aligned}$$

where \(\omega _j = e^{2 \pi i j/n}\), \(0 \le j \le n-1\), represent the nth roots of unity. In this context we also derive the Green’s function of \(\big ((- \Delta _D)^n - z I\big )^{-1}\), \(n \in {\mathbb {N}}\).

Dedicated to the memory of Erik Balslev (9-27-1935–1-11-2013). K. K. was supported by the Baylor University Summer Sabbatical and Research Leave Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications Inc, New York (1972)

    MATH  Google Scholar 

  2. Alladi, K., Defant, C.: Revisiting the Riemann zeta function at positive even integers. Int. J. Number Theory 14, 1849–1856 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apostol, T.M.: Another elementary proof of Euler’s formula for \(\zeta (2n)\). Am. Math. Monthly 80, 425–431 (1973)

    MathSciNet  MATH  Google Scholar 

  4. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

    Book  MATH  Google Scholar 

  5. Apostol, T.M.: A proof that Euler missed: evaluating \(\zeta (2)\) the easy way. Math. Intell. 5(3), 59–60 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ayoub, R.: Euler and the zeta function. Am. Math. Monthly 81, 1067–1086 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benko, D.: The Basel problem as a telescoping series. College Math. J. 43, 244–250 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benko, D., Molokach, J.: The Basel problem as a rearrangement of series. College Math. J. 44, 171–176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berndt, B.: Evaluation of \(\zeta (2n)\). Math. Mag. 48, 148–154 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Chapman, Evaluating \(\zeta (2)\), Preprint (1999), http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/zeta2.pdf

  11. Chen, M.P.: An elementary calculation of \(\zeta (2n)\). Chin. J. Math. 3, 11–15 (1975)

    Google Scholar 

  12. Choe, B.R.: An elementary proof of \(\sum _{n=1}^{\infty }1/n^{2}=\pi ^{2}/6\). Am. Math. Monthly 94, 662–663 (1987)

    MATH  Google Scholar 

  13. Chungang, J., Yonggao, C.: Euler’s formula for \(\zeta (2k)\), proved by induction on k. Math. Mag. 73, 154–155 (2000)

    Article  MathSciNet  Google Scholar 

  14. Ciaurri, Ó., Navas, L.M., Ruiz, F.J., Varona, J.L.: A simple computation of \(\zeta (2k)\). Am. Math. Monthly 122, 444–451 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations, Reprinted. Krieger, Malabar (1985)

    MATH  Google Scholar 

  16. Cole, R.H.: Theory of Ordinary Differential Equations. Appleton-Century-Crofts, New York (1968)

    MATH  Google Scholar 

  17. Daners, D.: A short elementary proof of \(\sum 1/k^2 = \pi ^2/6\). Math. Mag. 85, 361–364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davies, E.B.: Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, vol. 106. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  19. E. de Amo, M. Díaz Carillo, J. Fernández-Sánchez, Another proof of Euler’s formula for \(\zeta (2k)\). Proc. Am. Math. Soc. 139, 1441–1444 (2011)

    Google Scholar 

  20. Dikii, L.A.: The zeta function of an ordinary differential equation on a finite interval. Izv. Akad. Nauk SSSR Ser. Mat. 19(4), 187–200 (1955)

    MathSciNet  Google Scholar 

  21. Dikii, L.A.: Trace formulas for Sturm-Liouville differential operators. Am. Math. Soc. Transl. 2(18), 81–115 (1961)

    MathSciNet  Google Scholar 

  22. W. Dunham, Euler: The Master of Us All, The Dolciani Mathematical Expositions (No. 22, Mathematical Association of America, Washington, DC, 1999)

    Google Scholar 

  23. Estermann, T.: Elementary evaluation of \(\zeta (2k)\). J. Lond. Math. Soc. 22, 10–13 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Euler, De summis serierum reciprocarum. Comment. Acad. Sci. Petropolit 7, 123–134 (1734/35), (1740); Opera omnia. Ser. 1 Bd. 14, 73–86. Leipzig-Berlin (1924)

    Google Scholar 

  25. Gesztesy, F., Kirsten, K.: Effective computation of traces, determinants, and \(\zeta \)-functions for Sturm-Liouville operators. J. Funct. Anal. 276, 520–562 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Giesy, D.P.: Still another proof that \(\sum 1/k^2 = \pi ^2/6\). Math. Mag. 45, 148–149 (1972)

    MathSciNet  MATH  Google Scholar 

  27. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, corr. and enl. ed. (Academic Press, 1980)

    Google Scholar 

  28. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading, MA (1994)

    MATH  Google Scholar 

  29. Grieser, D.: Über Eigenwerte, Integrale und \(\pi ^{2}/6\): Die Idee der Spurformel. Math. Semesterber. 54(2), 199–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Goswami, A \(q\)-analogue for Euler’s evaluations of the Riemann zeta function. Res. Number Th. 5(3) (2019)

    Google Scholar 

  31. Harper, J.D.: Another simple proof of \(1+\frac{1}{2^2}+\frac{1}{3^2}+\dots = \frac{\pi ^2}{6}\). Am. Math. Monthly 110, 540–541 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Hirschhorn, M.D.: A simple proof that \(\zeta (2)=\frac{\pi ^2}{6}\). Math. Intell. 33(3), 81–82 (2011)

    Article  Google Scholar 

  33. J. Hofbauer, A simple proof that \(1 +\frac{1}{2^2}+\frac{1}{3^2}+\dots = \frac{\pi ^2}{6}\) and related identities. Am. Math. Monthly 109, 196–200 (2002)

    Google Scholar 

  34. Holme, F.: En enkel beregning av \(\sum _{k=1}^{\infty }1/k^{2}\). Nordisk Mat. Tidskr. 18, 91–92 (1970)

    MathSciNet  MATH  Google Scholar 

  35. Hovstad, R.: The series \(\sum _{1}^{\infty }1/k^{2p}\) the area of the unit circle and Leibniz’ formula. Nordisk Mat. Tidskr. 20, 92–98 (1972)

    MathSciNet  MATH  Google Scholar 

  36. Ivan, M.: A simple solution to the Basel problem. Gen. Math. 16(4), 111–113 (2008)

    MathSciNet  MATH  Google Scholar 

  37. W. Kapteyn, Sur le calcul numérique de la série  \(\sum _{s=0}^{\infty } \frac{1}{(\alpha ^2 + \beta ^2 s^2)^{q/2}}\). Mem. Soc. Roy. Sci. de Liège (3), 6(9) (1906)

    Google Scholar 

  38. Kimble, G.: Euler’s other proof. Math. Mag. 60, 282 (1987)

    Article  MathSciNet  Google Scholar 

  39. Kline, M.: Euler and infinite series. Math. Mag. 56, 307–314 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Knopp, K.: Theory and Application of Infinite Series. Dover, New York (1990)

    MATH  Google Scholar 

  41. K. Knopp, I. Schur, Über die Herleitung der Gleichung \(\sum _{n=1}^\infty \, \frac{1}{n^2} = \frac{\pi ^2}{6}\). Archiv Math. Physik 3(27), 174–176. See also I. Schur, Gesammelte Abhandlungen II, vol. 1973 (Springer, New York, 1918), pp. 246–248

    Google Scholar 

  42. R.A. Kortram, Simple proofs for \(\sum _{k=1}^{\infty }1/k^{2}=\pi ^{2}/6\) and \(\sin x = x \Pi ^{\infty }_{k=1} \left(1-\frac{x^{2}}{k^{2}\pi {2}}\right)\). Math. Mag. 69, 122–125 (1996)

    Google Scholar 

  43. Kuo, H.: A recurrence relation for \(\zeta (2n)\). Bull. Am. Math. Soc. 55, 573–574 (1949)

    Article  MATH  Google Scholar 

  44. Marshall, T.: A short proof of \(\zeta (2)=\pi ^2/6\). Am. Math. Monthly 117, 352–353 (2010)

    Article  MATH  Google Scholar 

  45. Matsuoka, Y.: An elementary proof of the formula \(\sum _{k=1}^\infty 1/k^2 = \pi ^2/6\). Am. Math. Monthly 68, 485–487 (1961)

    Article  MATH  Google Scholar 

  46. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (eds.), NIST Handbook of Mathematical Functions, NIST, National Institute of Standards and Technology, U.S. Department of Commerce, Washington, DC (Cambridge University Press, Cambridge, 2010). https://dlmf.nist.gov/

  47. Osler, T.J.: Finding \(\zeta (2p)\) from a product of sines. Am. Math. Monthly 111, 52–54 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Papadimitriou, I.: A simple proof of the formula \(\sum _{k\in \mathbb{N}}k^{-2}=\pi ^{2}/6\). Am. Math. Monthly 80, 424–425 (1973)

    MATH  Google Scholar 

  49. Passare, M.: How to compute \(\sum 1/n^2\) by solving triangles. Am. Math. Monthly 115, 745–752 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  50. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Gordon and Breach, New York, 1986)

    Google Scholar 

  51. Robbins, N.: Revisiting an old favorite, \(\zeta (2m)\). Math. Mag. 72, 317–319 (1999)

    Article  MathSciNet  Google Scholar 

  52. R. Roy, Sources in the Development of Mathematics. Infinite Series and Products from the Fifteenth to the Twenty-first Century (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  53. C.E. Sandifer, Euler’s solution of the Basel problem—the longer story. Euler at 300 (MAA Spectrum, Math. Assoc. America, Washington, D.C., 2007), pp. 105–117

    Google Scholar 

  54. Sandifer, C.E.: The Early Mathematics of Leonhard Euler. MAA Spectrum, Mathematical Association of America, Washington, D.C. (2007)

    MATH  Google Scholar 

  55. B. Simon, Trace Ideals and Their Applications, Mathematical Surveys and Monographs, vol. 120, 2nd edn. (Amer. Math. Soc., Providence, R.I., 2005)

    Google Scholar 

  56. Simon, B.: Operator Theory, A Comprehensive Course in Analysis, Part 4. Amer. Math. Soc, Providence, R.I. (2015)

    MATH  Google Scholar 

  57. Skau, I., Selmer, E.S.: Noen anvendelser av Finn Holmes methode for beregning av \(\sum _{k=1}^{\infty }k^{-2}\). Nordisk Mat. Tidskr. 19, 120–124 (1971)

    MathSciNet  MATH  Google Scholar 

  58. Stakgold, I., Holst, M.: Green’s Functions and Boundary Value Problems, 3rd edn. Pure and Applied Mathematics, Wiley, Hoboken, N.J. (2011)

    Book  MATH  Google Scholar 

  59. Stark, E.L.: Another proof of the formula \(\sum _{k=1}^\infty \, 1/k^2 = \pi ^2/6\). Am. Math. Monthly 76, 552–553 (1969)

    MATH  MathSciNet  Google Scholar 

  60. Stark, E.L.: A new method of evaluating the sums of \(\sum _{k=1}^\infty k^{-2p}, \, p=1,2,3,\dots \) and related series. Elem. Math. 27, 32–34 (1972)

    MathSciNet  MATH  Google Scholar 

  61. Stark, E.L.: The series \(\sum _{k\in {\mathbb{N}}}k^{-s}\), \(s=2,3,4,\ldots \), once more. Math. Mag. 47, 197–202 (1974)

    MathSciNet  MATH  Google Scholar 

  62. E.L. Stark, Another way to sum \(\sum (1/k^2)\), Math. Gaz. 63(423), 47 (1979)

    Google Scholar 

  63. Z.-W. Sun, Two q-analogues of Euler’s formula  \(\zeta (2)=\pi ^{2}/6\), preprint, arxiv: 1802.01473

  64. G. Teschl, Topics in Real and Functional Analysis, Graduate Studies in Mathematics (Amer. Math. Soc., Providence, R.I., to appear)

    Google Scholar 

  65. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford, Reprinted (1985)

    Google Scholar 

  66. Tsumura, H.: An elementary proof of Euler’s formula for \(\zeta (2n)\). Am. Math. Monthly 111, 430–431 (2004)

    MathSciNet  MATH  Google Scholar 

  67. Vermeeren, M.: Modified equations and the Basel problem. Math. Intell. 40(2), 33–37 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn., reprinted in 1996 (Cambridge University Press, Cambridge, 1944)

    Google Scholar 

  69. Williams, G.T.: A new method of evaluation \(\zeta (2n)\). Am. Math. Monthly 60, 19–25 (1953)

    Google Scholar 

  70. Williams, K.S.: On \(\sum _{n=1}^{\infty }(1/n^{2k})\). Math. Mag. 44, 273–276 (1971)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashbaugh, M.S., Gesztesy, F., Hermi, L., Kirsten, K., Littlejohn, L., Tossounian, H. (2021). Green’s Functions and Euler’s Formula for \(\zeta (2n)\). In: Albeverio, S., Balslev, A., Weder, R. (eds) Schrödinger Operators, Spectral Analysis and Number Theory. Springer Proceedings in Mathematics & Statistics, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-030-68490-7_3

Download citation

Publish with us

Policies and ethics