Skip to main content

Bamboo Cellulose Gel/MMT Polymer Nanocomposites for High Strength Materials

  • Chapter
  • First Online:
Bamboo Polymer Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This research focuses on the interrelationship between the structure and properties of cellulosic composites. To achieve its optimum performance, the compatibility of produced nanocomposites was focus. Few studies had shown that the properties of biopolymers enhanced by the presence of nanofillers. This was proved from the characterization analyses, involving structural, thermal and mechanical properties of the nanocomposites using the Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive x-ray (EDS/EDX), Brunauer-Emmett-Teller (BET), tensile strength and tensile modulus tests. For the mechanical properties, the highest tensile strength and tensile modulus was achieved for Sample 10 which contain 4wt% cellulose, 2.434wt% MMT and 93.566wt% of PLA. The strength generated by this composite was 16.063 MPa for the tensile strength and 0.015083 GPa for the tensile modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arts, K., Wal, R.v.d., Adams, W.M.: Digital technology and the conservation of nature. Ambio 44(1), 661–673 (2015). https://doi.org/10.1007/s13280-015-0705-1

  2. Owusu, P.A., Asumadu-Sarkodie, S.: A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3(1), 1167990 (2016). https://doi.org/10.1080/23311916.2016.1167990

    Article  Google Scholar 

  3. Siti Suhaily, S., Abdul Khalil, H.P.S., Wan Nadirah, W.O., Jawai, M.: Bamboo based biocomposites material, design and applications. In: Mastai, Y. (ed.) Materials science: advanced topics, intechopen, pp. 1–10 (2013). https://doi.org/10.5772/56057

  4. Liu, Y., Ying, Z., Wang, S., Liao, J., Lu, H., Ma, L., Li, Z.: Modeling the impact of reproductive mode on masting. Ecol. Evol. 7(16), 6284–6291 (2017). https://doi.org/10.1002/ece3.3214

    Article  Google Scholar 

  5. Awoyera, P.O., Ugwu, E.I.: Sustainability and recycling of bamboo for engineering applications. Encycl. Renew. Sustain. Mater. 2(1), 337–346 (2017). https://doi.org/10.1016/B978-0-12-803581-8.10367-4

    Article  Google Scholar 

  6. Ng, F., & Noor, A. (1980). Malaysia. In: Lessard, G., Chouinard, A. (eds.) Bamboo research in Asia. Proceedings of the workshop. Singapore: International Union Forestry Research Organization and International Development Research Centre, Singapore, pp. 91–96. http://hdl.handle.net/10625/5559

  7. Kamaruzaman, A.B.: Bamboo resource in Peninsular Malaysia. Bul. Buluh (Bamboo) 1(1), 8–9 (1992)

    Google Scholar 

  8. Wong, K.M.: Current and potential use of bamboo in Peninsular Malaysia. J. Am. Bamboo Soc. 7(1&2), 1–15 (1989)

    Google Scholar 

  9. Mohamed, A. H., & Appanah, S.: Bamboo resources conservation and utilisation in Malaysia. In: Rao, A.N., Rao, V.R. (eds.) Bamboo—conservation, diversity, ecogeography, germplasm, resource utilization and taxonomy (1998). https://www.bioversityinternational.org/fileadmin/bioversity/publications/Web_version/572/ch27.htm

  10. Roslan, S.A.H., Rasid, Z.A., Hassan, M.Z.: Bamboo reinforced polymer composite—a comprehensive review. IOP Conf. Ser.: Mater. Sci. Eng. 344(1), 012008 (2018). https://doi.org/10.1088/1757-899X/344/1/012008

    Article  Google Scholar 

  11. Liew, F.K., Hamdan, S., Rahman, M.R., Rusop, M.: Thermomechanical properties of jute/bamboo cellulose composite and its hybrid composites: the effects of treatment and fiber loading. Adv. Mater. Sci. Eng. 2017(1), 1–15 (2017). https://doi.org/10.1155/2017/8630749

    Article  CAS  Google Scholar 

  12. Sun, S., Sun, S., Cao, X., Sun, R.: The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Biores. Technol. 199(1), 49–58 (2016). https://doi.org/10.1016/j.biortech.2015.08.061

    Article  CAS  Google Scholar 

  13. Menon, M.P., Selvakumar, R., Kumar, P.S., Ramakrishna, S.: Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Advances 7(68), 42750–42773 (2017). https://doi.org/10.1039/C7RA06713E

    Article  Google Scholar 

  14. Kang, H., Liu, R., Huang, Y.: Cellulose-based gels. Macromol. Chem. Phys. 217(2), 1322–1334 (2016). https://doi.org/10.1002/macp.201500493

    Article  CAS  Google Scholar 

  15. Mattausch, H. (2015). Properties and applications of nanoclay composites. In: Laske, S. (ed.) Polymer nanoclay composites, William Andrew, 127–155. https://doi.org/10.1016/B978-0-323-29962-6.00005-4

  16. Shetti, N., Nayak, D., Reddy, K., Aminabhvi, T.: Graphene-clay-based hybrid nanostructures for electrochemical sensors and biosensors. In: Pandikumar, A., Rameshkumar, P. (eds.) Graphene-Based Electrochem. Sens.S Biomol. 1(1), 235–274 (2019). https://doi.org/10.1016/B978-0-12-815394-9.00010-8

  17. Ghadiri, M., Chrzanowski, W., Rohanizadeh, R.: Biomedical applications of cationic clay minerals. RSC Advances 5(37), 29467–29481 (2015). https://doi.org/10.1039/C4RA16945J

    Article  CAS  Google Scholar 

  18. Rahman, M.R., Hui, J.L., Hamdan, S.: Introduction and reinforcing potential of silica and various clay dispersed nanocomposites. In: Rahman, M.R. (ed.) Silica and clay dispersed polymer nanocomposite. Woodhead Publishing, Cambridge, pp. 1–24 (2018). https://doi.org/10.1016/B978-0-08-102129-3.00001-4

  19. Uddin, F.: Montmorillonite: An introduction to properties and utilization. In: Current topics in the utilization of clay in industrial and medical applications, IntechOpen (2018). https://doi.org/10.5772/intechopen.77987

  20. ASTM E1252-98.: Standard practice for general techniques for obtaining infrared spectra for qualitative analysis, ASTM International, West Conshohocken, PA (2013). https://doi.org/10.1520/E1252-98R13E01

  21. ASTM E168-16.: Standard practices for general techniques of infrared quantitative analysis, ASTM International, West Conshohocken, PA (2016). https://doi.org/10.1520/E0168-16

  22. ASTM E2015-04.: Standard guide for preparation of plastics and polymeric specimens for microstructural examination, ASTM International, West Conshohocken, PA (2014). https://doi.org/10.1520/E2015-04R14

  23. ASTM D638-14.: Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0638-14

  24. Zheng, Y., Fu, Z., Li, D., Wu, M.: Effects of ball milling processes on the microstructure and rheological properties of microcrystalline cellulose as a sustainable polymer additive. Material 11(7), 1057 (2018). https://doi.org/10.3390/ma11071057

    Article  CAS  Google Scholar 

  25. Radotic, K., Micic, M.: Methods for extraction and purification of lignin and cellulose from plant tissues. In: Micic, M. (ed.) Sample preparation techniques for soil, plant, and animal samples, pp. 365–376 (2016). https://doi.org/10.1007/978-1-4939-3185-9_26

  26. Nguyen, H.D., Mai, T.T., Nguyen, N.B., Dang, T.D., Le, M.L., Dang, T.T., Tran, V.M.: A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv. Nat. Sci.: Nanosci. Nanotechnol. 4(9), 015016 (2013). https://doi.org/10.1088/2043-6262/4/1/015016

    Article  CAS  Google Scholar 

  27. Gabhane, J., William, S., Vaidya, A., Das, S., Wate, S.: Solar assisted alkali pretreatment of garden biomass: effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose. Waste Manag. 40(1), 92–99 (2015). https://doi.org/10.1016/j.wasman.2015.03.002

    Article  CAS  Google Scholar 

  28. Li, D., Long, L., Ding, S.: Alkaline organocolv pretreatment of different sorghum stem parts for enhancing the total reducing sugar yield and p-coumaric acid release. Biotechnol. Biofuels 12(106), 1–10 (2020). https://doi.org/10.1186/s13068-020-01746-4

    Article  CAS  Google Scholar 

  29. Moran, J.I., Alvarez, V.A., Cyras, V.P., Vasquez, A.: Extraction of cellulose and preparation of nanocellulose from sisal fiber. Cellulose 15(1), 149–159 (2008). https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  30. Arjmandi, R., Hassan, A., Mohamad Haafiz, M., Zakaria, Z.: Effect of micro—And nano-cellulose on tensile and morphological properties of montmorillonite nanoclay reinforced polylactic acid nanocomposite. In: Jawaid, M., Qaiss, A., Bouhfid, R. (eds.) Nanoclay reinforced polymer composites, pp. 103–125 (2016). https://doi.org/10.1007/978-981-10-0950-1_5

  31. Li, B.L., Setyawati, M.L., Chen, L., Xie, J., Ariga, K., Lim, C.-T., Garaj, S., Leong, D.T.: Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. Appl. Mater. Interfaces 9(8), 15286–15296 (2017). https://doi.org/10.1021/acsami.7b02529

    Article  CAS  Google Scholar 

  32. Arjmandi, R., Hassan, A., Haafiz, M.M., Zakaria, Z.: 7—Effects of cellulose nanowhiskers preparation methods on the properties of hybrid montmorillonite/cellulose nanowhiskers reinforced polyactic acid nanocomposites. In: Lau, K.-T., Hung, A.P.-Y. Natural fiber—reinforced biodegradable and bioresorbable polymer composites, Woodhead Publishing, Cambridge, pp. 111–136 (2017). https://doi.org/10.1016/B978-0-08-100656-6.00007-8

  33. Qu, P., Gao, Y., Wu, G., Zhang, L.: Nanocomposite of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources 5(3), 1811–1823 (2010). https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_05_3_1811_Qu_GWZ_Nanocomposites_PLA_Cellulose

  34. Hamad, W.Y.: Cellulose nanocrystals: properties, production and applications, pp. 1–312. John Wiley & Sons, West Sussex (2017)

    Book  Google Scholar 

  35. Shashanka, R., Chaira, D.: Ball milled nano-structured stainless steel powders: fabrication and characterisation. Educreation Publishing, New Delhi (2017)

    Google Scholar 

  36. Piras, C.C., Prieto, S.F., De Borggraeve, W.M.: Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv. 1(3), 937–947 (2019). https://doi.org/10.1039/C8NA00238J

    Article  CAS  Google Scholar 

  37. Gao, C., Xiao, W., Ji, G., Zhang, Y., Cao, Y., Han, L.: Regularity and mechanism of wheat straw properties change in ball milling process at cellular scale. Biores. Technol. 241(1), 214–219 (2017). https://doi.org/10.1016/j.biortech.2017.04.115

    Article  CAS  Google Scholar 

  38. Vaidya, A.A., Donaldson, L.A., Newman, R.H., Suckling, I.D., Campion, S.H., Lloyd, J.A., Murton, K.D.: Micromorphological changes and mechanism associated with wet ball milling of Pinus radiata substrate and consequences for saccharification at low enzyme loading. Biores. Technol. 214(1), 132–137 (2016). https://doi.org/10.1016/j.biortech.2016.04.084

    Article  CAS  Google Scholar 

  39. Barbash, V., Yaschenko, O., Alushkin, S., Kondratyuk, A., Posudievsky, O., Koshechko, V.: The effect of mechanochemical treatment of the celllulose on characteristics of nanocellulose films. Nanoscale Res. Lett. 11(1), 410 (2016). https://doi.org/10.1186/s11671-016-1632-1

    Article  CAS  Google Scholar 

  40. Nemazifard, M., Kavoosi, G., Marzban, Z., Ezedi, N.: Physical, mechanical, water binding and antioxidant properties of cellulose dispersions and cellulose film incorporated with pomegranate seed extract. Int. J. Food Prop. 20(2), 1501–1514 (2017). https://doi.org/10.1080/10942912.2016.1219369

    Article  CAS  Google Scholar 

  41. Mubarak, Y.: Tensile and impact properties of microcrystalline cellulose nanoclay polypropylene composites. Int. J. Polym. Sci. 2018(1), 1708695 (2018). https://doi.org/10.1155/2018/1708695

  42. Dos Santos, F., Lulianelli, G., Tavares, M.: Effects of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix. Polym. Testing 61(1), 280–288 (2017). https://doi.org/10.1016/j.polymertesting.2017.05.028

    Article  CAS  Google Scholar 

  43. Shamsabadi, M., Behzad, T., Bagheri, R., Nari-Nasrabadi, B.: Preparation and characterisation of low-density polyethylene/thermoplastic starch composites reinforced by cellulose nanofibers. Polym. Compos. 36(12), 2309–2316 (2015). https://doi.org/10.1002/pc.23144

    Article  CAS  Google Scholar 

  44. Hwang, H., Kim, D.-G., Jang, N.-S., Kong, J.-H., Kim, J.-M.: Simple method for high—performance stretchable composite conductors with entrapped air bubbles. Nanoscale Res. Lett. 270(1), 64–76 (2016). https://doi.org/10.1016/j.apsusc.2012.12.083

    Article  CAS  Google Scholar 

  45. Kian, L.K., Jawaid, M., Ariffin, H., Alothman, O.Y.: Isolation and characterisation of microcrystalline cellulose from roselle fibers. Int. J. Biol. Macromol. 103(1), 931–940 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.135

    Article  CAS  Google Scholar 

  46. Aminullah, Rohaeti, E., Yuliarto, B., Irzaman.: Reduction of silicon dioxide from bamboo leaves and its analysis using energy dispersive x-ray and fourier transform infrared. IOP Conf. Ser.: Earth Environ. Sci. 209(1),012048 (2018). https://doi.org/10.1088/1755-1315/209/1/012048

  47. Zhao, X.Q., Shen, R.F.: Aluminium-nitrogen interactions in the soil-plant system. Plant Sci. 9(1), 807 (2018). https://doi.org/10.3389/fpls.2018.00807

    Article  Google Scholar 

  48. Mondal, S.: Review on nanocellulose polymer nanocomposites. Polym. Plast. Technol. Eng. 57(13), 1377–1391 (2017). https://doi.org/10.1080/03602559.2017.1381253

    Article  CAS  Google Scholar 

  49. Kowalczyk, M., Piorkowska, E., Kulpinski, P., Pracella, M.: Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size of fibers. Compos. A Appl. Sci. Manuf. 42(10), 1509–1514 (2011). https://doi.org/10.1016/j.compositesa.2011.07.003

    Article  CAS  Google Scholar 

  50. Irvin, C.W., Satam, C.C., Meredith, C., Shofner, M.L.: Mechanical reinforcement and thermal properties of PVA tricomponent nanocomposites with chitin nanofibers and cellulose nanocrystals. Compos. A Appl. Sci. Manuf. 116(1), 147–157 (2019). https://doi.org/10.1016/j.compositesa.2018.10.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Universiti Malaysia Sarawak (UNIMAS) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Rezaur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M.R., Bakri, M.K.B. (2021). Bamboo Cellulose Gel/MMT Polymer Nanocomposites for High Strength Materials. In: Rahman, M.R. (eds) Bamboo Polymer Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-68090-9_7

Download citation

Publish with us

Policies and ethics