Abstract
This an exploratory paper that discusses the use of artificial intelligence (AI) in ECG interpretation and opportunities for improving the explainability of the AI (XAI) when reading 12-lead ECGs. To develop AI systems, many principles (human rights, well-being, data agency, effectiveness, transparency, accountability, awareness of misuse and competence) must be considered to ensure that the AI is trustworthy and applicable. The current computerised ECG interpretation algorithms can detect different types of heart diseases. However, there are some challenges and shortcomings that need to be addressed, such as the explainability issue and the interaction between the human and the AI for clinical decision making. These challenges create opportunities to develop a trustworthy XAI for automated ECG interpretation with a high performance and a high confidence level. This study reports a proposed XAI interface design in automatic ECG interpretation based on suggestions from previous studies and based on standard guidelines that were developed by the human computer interaction (HCI) community. New XAI interfaces should be developed in the future that facilitate more transparency of the decision logic of the algorithm which may allow users to calibrate their trust and use of the AI system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems (The IEEE Global Initiative). Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, First Edition (EAD1e), Creative Commons Attribution Non-Commercial 4.0 United States License. https://ethicsinaction.ieee.org/#read
Wachter, S., Mittelstadt, B., Floridi, L.: Transparent, explainable, and accountable AI for robotics. Sci. Robot. (2017) https://doi.org/10.1126/scirobotics.aan6080
European Commission. Ethics guidelines for trustworthy AI. Retrieved from https://ec.europa.eu/futurium/en/ai-allianceconsultation/guidelines/1
Schläpfer, J., Wellens, H.J.: Computer-interpreted electrocardiograms: benefits and limitations. J. Am. Coll. Cardiol. 70, 1183–1192 (2017). https://doi.org/10.1016/j.jacc.2017.07.723
Bond, R., et al.: Automation bias in medicine: the influence of automated diagnoses on interpreter accuracy and uncertainty when reading electrocardiograms. J. Electrocardiol. 51, S6–S11 (2018). https://doi.org/10.1016/j.jelectrocard.2018.08.007
Knoery, C.R., Bond, R., et al.: SPICED-ACS: study of the potential impact of a computer-generated ECG diagnostic algorithmic certainty index in STEMI diagnosis: towards transparent AI. J. Electrocardiol. 57, S86–S91 (2019). https://doi.org/10.1016/j.jelectrocard.2019.08.006
Finlay, D., et al.: Effects of electrode placement errors in the EASI-derived 12-lead electrocardiogram. J. Electrocardiol. 43, 606–611 (2010). https://doi.org/10.1016/j.jelectrocard.2010.07.004
Bond, R., Dewar, D., et al.: Human factors analysis of the CardioQuick Patch®: a novel engineering solution to the problem of electrode misplacement during 12-lead electrocardiogram acquisition. J. Electrocardiol. 49, 911–918 (2016). https://doi.org/10.1016/j.jelectrocard.2016.08.009
Rjoob, K., Bond, R., et al.: Data driven feature selection and machine learning to detect misplaced V1 and V2 chest electrodes when recording the 12-lead electrocardiogram. J. Electrocardiol. 57, 39–43 (2019). https://doi.org/10.1016/j.jelectrocard.2019.08.017
Rjoob, K., Bond, R.: Machine learning improves the detection of misplaced v1 and v2 electrodes during 12-lead electrocardiogram acquisition. In: Computing in Cardiology (CinC), pp. 1–4. IEEE (2019). https://doi.org/10.22489/CinC.2019.035
Smulyan, H.: The computerized ECG: friend and foe. Am. J. Med. 132, 153–160 (2018). https://doi.org/10.1016/j.amjmed.2018.08.025
Mason, J.W., et al.: Recommendations for the standardization and interpretation of the electrocardiogram: part II: electrocardiography diagnostic statement list a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 49, 1128–1135 (2017). https://doi.org/10.1016/j.jacc.2007.01.025
Lyon, A., et al.: Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. J. R. Soc. Interface 15, 20170821 (2018). https://doi.org/10.1098/rsif.2017.0821
Mark Estes, N.A.: Computerized interpretation of ECGs supplement not a substitute. Circulation: Arrhythmia and Electrophysiology. Vol. 6, pp. 2–4 (2013) https://doi.org/10.1161/CIRCEP.111.000097
Ravichandran, L., et al.: Novel tool for complete digitization of paper electrocardiography data. IEEE J. Transl. Eng. Health Med. 1, 1800107–1800107 (2013). https://doi.org/10.1109/JTEHM.2013.2262024
Baydoun, M., et al.: High precision digitization of paper-based ECG records: a step toward machine learning. IEEE J. Transl. Eng. Health Med. 7, 1–8 (2019). https://doi.org/10.1109/JTEHM.2019.2949784
Brisk, R., Bond, R., et al.: Deep learning to automatically interpret images of the electrocardiogram: Do we need the raw samples? J. Electrocardiol. 57, S65–S69 (2019). https://doi.org/10.1016/j.jelectrocard.2019.09.018
Miller, T., et al.: Explainable AI: beware of inmates running the asylum or: how I learnt to stop worrying and love the social and behavioural sciences. arXiv preprint arXiv:1712.00547 (2017)
Miller, T., et al.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007
Lundberg, S., et al.: A unified approach to interpreting model predictions. arXiv:1705.07874 (2017)
Ribeiro, M.T., et al.: “Why should i trust you?”: explaining the predictions of any classifie. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.2939778
Montavon, G., et al.: Methods for interpreting and understanding deep neural networks. Digit. Sig. Proc. 73, 1–15 (2018). https://doi.org/10.1016/j.dsp.2017.10.011
Zilke, J.R., Loza Mencía, E., Janssen, F.: DeepRED–Rule Extraction from Deep Neural Networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_29
Liao, Q.V., et al.: Questioning the AI: informing design practices for explainable AI user experiences. In: Proceedings of the ACM CHI Conference on Human Factors in Computing Systems (CHI 2020), pp. 1–15 (2020). https://doi.org/10.1145/3313831.3376590
Badashian, A.S., Mahdavi, M., Pourshirmohammadi, A.: Fundamental usability guidelines for user interface design. In: International Conference on Computational Sciences and Its Applications, pp. 106–113 (2008). https://doi.org/10.1109/ICCSA.2008.45
Low, S., et al.: Enhancing user experience through customisation of UI design. Procedia Manuf. 3, 1932–1937 (2015). https://doi.org/10.1016/j.promfg.2015.07.237
Cairns, A.W., Bond, R.R., et al.: A decision support system and rule-based algorithm to augment the human interpretation of the 12-lead electrocardiogram. J. Electrocardiol. 50, 781–786 (2017). https://doi.org/10.1016/j.jelectrocard.2017.08.007
Alqaraawi, A., et al.: Evaluating saliency map explanations for convolutional neural networks: a user study. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 275–285 (2020). https://doi.org/10.1145/3377325.3377519
Yang, F., et al. How do visual explanations foster end users’ appropriate trust in machine learning?. Proceedings of the 25th International Conference on Intelligent User Interfaces March 2020, pp. 189–201, https://doi.org/10.1145/3377325.3377480
Drozdal, J., et al.: Trust in AutoML: exploring information needs for establishing trust in automated machine learning systems. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 297–307 (2020). https://doi.org/10.1145/3377325.3377501
DAIC (AUGUST 08, 2019). Retrieved from https://www.dicardiology.com/content/half-hospital-decision-makers-plan-invest-ai-2021
Reis, T., Bornschlegl, M.X., Hemmje, M.L.: Towards a reference model for artificial intelligence supporting big data analysis. In: Proceedings of the 2020 International Conference on Data Science (ICDATA2020) (2020)
Acknowledgment
This work is supported by the European Union’s INTERREG VA programme, managed by the Special EU Programmes Body (SEUPB). The work is associated with the project – ‘Centre for Personalised Medicine – Clinical Decision Making and Patient Safety’. The views and opinions expressed in this study do not necessarily reflect those of the European Commission or the Special EU Programmes Body (SEUPB).

Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Rjoob, K. et al. (2021). Towards Explainable Artificial Intelligence and Explanation User Interfaces to Open the ‘Black Box’ of Automated ECG Interpretation. In: Reis, T., Bornschlegl, M.X., Angelini, M., Hemmje, M.L. (eds) Advanced Visual Interfaces. Supporting Artificial Intelligence and Big Data Applications. AVI-BDA ITAVIS 2020 2020. Lecture Notes in Computer Science(), vol 12585. Springer, Cham. https://doi.org/10.1007/978-3-030-68007-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-68007-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68006-0
Online ISBN: 978-3-030-68007-7
eBook Packages: Computer ScienceComputer Science (R0)