Skip to main content

The Effect of In-Domain Word Embeddings for Chemical Named Entity Recognition

  • Conference paper
  • First Online:
Book cover Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019)

Abstract

Research articles and patents contain information in the form of text. Chemical named entity recognition (ChemNER) refers to the process of extracting chemical named entities from research articles or patents. Chemical information extraction pipelines have ChemNER as its first step. Existing ChemNER methods rely on rule-based, dictionary-based, or feature-engineered based approaches. More recently, deep learning-based approaches have been used to approach ChemNER. Deep-learning based methods utilize pre-trained word embeddings such as word2vec and Glove. Previously, we have used embedded language models (ELMo) with Bi-LSTM-CRF to learn the effect of contextual information for ChemNER. In this paper, we further experiment to learn the impact of using in-domain (large unlabelled corpora of chemical patents) pre-trained ELMo for ChemNER and compare it with ELMo pre-trained on biomedical corpora. We report the results on three benchmark corpora and conclude that in-domain embeddings statistically significantly improve F1-score on patent corpus but do not lead to any performance gains for chemical articles corpora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://allennlp.org/elmo.

  2. 2.

    https://biocreative.bioinformatics.udel.edu/resources/publications/.

  3. 3.

    https://github.com/cambridgeltl/MTL-Bioinformatics-2016/tree/master/data/BC4CHEMD.

References

  1. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K. and Dyer, C. : Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  2. Akhondi, S.A., et al.: Annotated chemical patent corpus: a gold standard for text mining. PloS one 9(9), e107477 (2014)

    Article  Google Scholar 

  3. Li, J., et al.: BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database, 1–10 (2016)

    Google Scholar 

  4. Pérez-Pérez, M., et al.: Evaluation of chemical and gene/protein entity recognition systems at BioCreative V. 5: the CEMP and GPRO patents tracks. In: Proceedings of the BioCreative Challenge Evaluation Workshop, vol. 5, pp. 11–18 (2017)

    Google Scholar 

  5. Krallinger, M., et al.: The CHEMDNER corpus of chemicals and drugs and its annotation principles. J. Cheminformatics 7(1), S2 (2015)

    Article  Google Scholar 

  6. Reimers, N., Gurevych, I: Reporting score distributions makes a difference: Performance study of lstm-networks for sequence tagging. arXiv preprint arXiv:1707.09861 (2017)

  7. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. arXiv preprint arXiv:1603.01354 (2016)

  8. Habibi, M., Weber, L., Neves, M., Wiegandt, D.L., Leser, U.: Deep learning with word embeddings improves biomedical named entity recognition. Bioinformatics 33(14), i37–i48 (2017)

    Article  Google Scholar 

  9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. : Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  10. Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

  11. Zhai, Z., et al.: Improving Chemical Named Entity Recognition in Patents with Contextualized Word Embeddings. arXiv preprint arXiv:1907.02679 (2019)

  12. Dernoncourt, F., Lee, J.Y., Szolovits, P.: NeuroNER: an easy-to-use program for named-entity recognition based on neural networks. arXiv preprint arXiv:1705.05487 (2017)

  13. Luo, L., et al.: An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition. Bioinformatics 34(8), 1381–1388 (2017)

    Article  Google Scholar 

  14. Giorgi, J.M., Bader, G.D.: Transfer learning for biomedical named entity recognition with neural networks. Bioinformatics 34(23), 4087–4094 (2018)

    Article  Google Scholar 

  15. Moen, S.P.F.G.H., Ananiadou, T.S.S.: Distributional semantics resources for biomedical text processing. Proc. Lang. Biol. Med. 39–44 (2013)

    Google Scholar 

  16. Crichton, G., Pyysalo, S., Chiu, B., Korhonen, A.: A neural network multi-task learning approach to biomedical named entity recognition. BMC Bioinf. 18(1), 368 (2017)

    Article  Google Scholar 

  17. Weber, L., Münchmeyer, J., Rocktäschel, T., Habibi, M., Leser, U.: HUNER: improving biomedical NER with pretraining. Bioinformatics 36(1), 295–302 (2020)

    Article  Google Scholar 

  18. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)

    Google Scholar 

  19. Awan, Z., Kahlke, T., Ralph, P.J., Kennedy, P.J.: Chemical named entity recognition with deep contextualized neural embeddings. In: 11th International Conference of Knowledge Discovery and Information Retrieval (2019)

    Google Scholar 

  20. Giorgi, J.M., Bader, G.D.: Towards reliable named entity recognition in the biomedical domain. Bioinformatics 36(1), 280–286 (2020)

    Article  Google Scholar 

  21. Leaman, R., Wei, C.H., Lu, Z.: tmChem: a high performance approach for chemical named entity recognition and normalization. J. Cheminformatics 7(S1), S3 (2015)

    Article  Google Scholar 

  22. Hemati, W., and Mehler, A.: LSTMVoter: chemical named entity recognition using a conglomerate of sequence labeling tools. J. Cheminformatics 11(1), 1–7 (2019). https://doi.org/10.1186/s13321-018-0327-2

  23. Corbett, P., Boyle, J.: Chemlistem: chemical named entity recognition using recurrent neural networks. J. Cheminformatics 10(1), 59 (2018)

    Article  Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  25. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  26. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  27. Rocktäschel, T., Weidlich, M., Leser, U.: ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics 28(12), 1633–1640 (2012)

    Article  Google Scholar 

  28. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data (2001)

    Google Scholar 

  29. Liu, S., Tang, B., Chen, Q., Wang, X.: Drug name recognition: approaches and resources. Information 6(4), 790–810 (2015)

    Article  Google Scholar 

  30. Khare, R., Leaman, R., Lu, Z.: Accessing biomedical literature in the current information landscape. In: Kumar, V.D., Tipney, Hannah Jane (eds.) Biomedical Literature Mining. MMB, vol. 1159, pp. 11–31. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0709-0_2

    Chapter  Google Scholar 

  31. Dai, X., Karimi, S., Hachey, B., Paris, C.: Using Similarity Measures to Select Pretraining Data for NER. arXiv preprint arXiv:1904.00585 (2019)

  32. Rebholz-Schuhmann, D., et al.: CALBC silver standard corpus. J. Bioinform. Comput. Biol. 8(01), 163–179 (2010)

    Article  Google Scholar 

  33. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 363–370. Association for Computational Linguistics, June 2005

    Google Scholar 

  34. Müller, T., Schmid, H., Schütze, H.: Efficient higher-order CRFs for morphological tagging. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 322–332, October 2013

    Google Scholar 

  35. Wei, C.H., Harris, B.R., Kao, H.Y., Lu, Z.: tmVar: a text mining approach for extracting sequence variants in biomedical literature. Bioinformatics 29(11), 1433–1439 (2013)

    Article  Google Scholar 

  36. Usié, A., Alves, R., Solsona, F., Vázquez, M., Valencia, A.: CheNER: chemical named entity recognizer. Bioinformatics 30(7), 1039–1040 (2014)

    Article  Google Scholar 

  37. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543, October 2014

    Google Scholar 

  38. Li, F., Zhang, M., Fu, G., Ji, D.: A neural joint model for entity and relation extraction from biomedical text. BMC Bioinform. 18(1), 198 (2017)

    Article  Google Scholar 

  39. Yang, Z., Salakhutdinov, R., Cohen, W.W.: Transfer learning for sequence tagging with hierarchical recurrent networks. arXiv preprint arXiv:1703.06345 (2017)

  40. Zhuang, F., et al.: A Comprehensive Survey on Transfer Learning. arXiv preprint arXiv:1911.02685 (2019)

  41. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 6(02), 107–116 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainab Awan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Awan, Z., Kahlke, T., Ralph, P.J., Kennedy, P.J. (2020). The Effect of In-Domain Word Embeddings for Chemical Named Entity Recognition. In: Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2019. Communications in Computer and Information Science, vol 1297. Springer, Cham. https://doi.org/10.1007/978-3-030-66196-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66196-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66195-3

  • Online ISBN: 978-3-030-66196-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics