Skip to main content

A Prototype Telepresence Robot for Use in the Investigation of Ebola and Lassa Virus Threatened Villages in Nigeria

  • Conference paper
  • First Online:
Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020 (ICSEng 2020)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 182))

Included in the following conference series:

  • 417 Accesses

Abstract

The article investigates the idea of low-cost, telepresence-based mobile robots for eventual use within villages and rural areas in Nigeria, where diseases such as the Ebola Virus Disease (EVD) and Lassa Haemorrhagic Fever (LHF) are common, yet human intervention is constrained due to the great risk of transmission through bodily fluids. To illustrate the concept and practical issues arising, a systems design approach is taken to identify some of the engineering requirements; and, in the focus of this article, a prototype has been developed at Lancaster University. The robotic device is semi-humanoid in that the upper half features two 7-DOF manipulators, designed in part to resemble human operation, while the lower half consists of a four-wheeled base, prioritising ease of operation and reliability over the flexibility offered by a leg-based system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization Ebola Response Roadmap Situation Reports. http://www.who.int/csr/disease/ebola/situation-reports/archive/en. Accessed 26 May 2020

  2. Sanchez, A., Geisbert, T.W., Feldmann H.: Filoviridae: Marburg and Ebola viruses. Fields Virology. 5th Edn. Lippincott Williams & Wilkins, Philadelphia, pp. 1409–1448 (2007)

    Google Scholar 

  3. Report of an International Commission: Ebola haemorrhagic fever in Zaire. Bull. World Health Organ. 56(2), 271–293 (1976)

    Google Scholar 

  4. Tseng, C.P., Chan, Y.J.: Overview of ebola virus disease. J. Chin. Med. Assoc. 78(1), 51–55 (2015)

    Article  Google Scholar 

  5. Alexander, K.A., Sanderson, C.E., Marathe, M., Lewis, B.L., Rivers, C.M., Shaman, J., Drake, J.M., Lofgren, E., Dato, V.M., Eisenberg, M.C., Eubank, S.: What factors might have led to the emergence of ebola in West Africa?. PLOS Neglected Trop. Dis. 9(6) (2015)

    Google Scholar 

  6. Fauci, A.S.: Ebola-underscoring the global disparities in health care resources. N. Engl. J. Med. 371(12), 1084–1086 (2014)

    Article  Google Scholar 

  7. Moghadam, S.R.J., Omidi, N., Bayrami, S., Moghadam, S.J., Seyed Alinaghi., S.: Ebola viral disease: a review literature. Asian Pac. J. Trop. Biomed. 5(4), 260–267 (2015)

    Google Scholar 

  8. Ogbu, O., Ajuluchukwu, E., Uneke, C.J.: Lassa fever in West African sub-region: an overview. J. Vector Borne Dis. 44(1), 1 (2007)

    Google Scholar 

  9. World Health Organization, Ebola Virus Disease factsheet. http://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease. Accessed on 26 May 2020

  10. Althaus, C.L., Low, N., Musa, E.O., Shuaib, F., Gsteiger, S.: Ebola virus disease outbreak in Nigeria: transmission dynamics and rapid control. Epidemics 11, 80–84 (2015)

    Article  Google Scholar 

  11. Weyer, J., Grobbelaar, A., Blumberg, L.: Ebola virus disease: history, epidemiology and outbreaks. Curr. Infect. Dis. Rep. 17(5), 21 (2015)

    Article  Google Scholar 

  12. Sheridan, T.: Human supervisory control of robot systems. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 808–812. IEEE (1986)

    Google Scholar 

  13. Harless, M., Donath, M.: An intelligent safety system for unstructured human/robot interaction. In: Proceedings of the Robots Conference and Exposition, 117–120 (1985)

    Google Scholar 

  14. Murphy, R.R.: Rescue robotics for homeland security. Commun. ACM 47(3), 66–68 (2004)

    Article  Google Scholar 

  15. Murphy, R.R.: A decade of rescue robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5448–5449. IEEE (2012)

    Google Scholar 

  16. Kristoffersson, A., Eklundh, K.S., Loutfi, A.: Measuring the quality of interaction in mobile robotic telepresence: a pilot’s perspective. Int. J. Soc. Robot. 5(1), 89–101 (2013)

    Article  Google Scholar 

  17. Paulos, E., Canny, J.: Designing personal tele-embodiment. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3173–3178 (1998)

    Google Scholar 

  18. Paulos, E., Canny, J.: Social tele-embodiment: understanding presence. Auton. Robots 11(1), 87–95 (2001)

    Article  MATH  Google Scholar 

  19. Adalgeirsson, S.O., Breazeal, C.: MeBot: a robotic platform for socially embodied presence. In: Proceedings of the 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Osaka, Japan, pp. 15–22 (2010)

    Google Scholar 

  20. Burgard, W., Trahanias, P., Hähnel, D., Moors, M., Schulz, D., Baltzakis, H., Argyros, A.: Tele-presence in populated exhibitions through web-operated mobile robots. Auton. Robots 15(3), 309–316 (2003)

    Google Scholar 

  21. Chaudary, B., Paajala, I., Keino, E., Pulli, P.: Tele-guidance based navigation system for the visually impaired and blind persons. In: eHealth vol. 360, pp. 9–16. Springer, Cham (2017)

    Google Scholar 

  22. Double robotics website. https://www.doublerobotics.com/. Accessed on 26 May 2020

  23. IEEE Spectrum article. https://spectrum.ieee.org/automaton/robotics/humanoids/toyota-gets-back-into-humanoid-robots-with-new-thr3. Accessed 26 May 2020

  24. Toyota website. https://newsroom.toyota.co.jp/en/detail/19666346. Accessed 26 May 2020

  25. Whitney, J.P., Chen, T., Mars, J., Hodgins, J.K.: A hybrid hydrostatic transmission and human-safe haptic telepresence robot. In: IEEE International Conference on Robotics and Automation, Stockholm, Sweden, pp. 690–695 (2016)

    Google Scholar 

  26. Bodner, J., Wykypiel, H., Wetscher, G., Schmid, T.: First experiences with the da Vinci™ operating robot in thoracic surgery. Eur. J. Cardio-thoracic Surg. 25(5), 844–851 (2004)

    Article  Google Scholar 

  27. Quinetiq Dragon Runner. https://www.qinetiq-na.com/products/unmanned-systems/dragon-runner. Accessed 26 May 2020

  28. Xsens website. https://www.xsens.com/cases/robo-sally-bomb-disposal-robot. Accessed on 26 May 2020

  29. Abe, K., Shiomi, M., Pei, Y.C., Zhang, T.Y., Ikeda, N., Nagai, T.: ChiCaRo: tele-presence robot for interacting with babies and toddlers. Adv. Robot. 32(4), 176–190 (2018)

    Article  Google Scholar 

  30. Ilias, B., Shukor, S.A., Yaacob, S., Adom, A.H., Razali, M.M.: A nurse following robot with high speed kinect sensor. ARPN J. Eng. Appl. Sci. 9(12), 2454–2459 (2014)

    Google Scholar 

  31. Ardanuy, P., Otto, C., Head, J., Powell, N., Grant, B., Howard, T.: Telepresence enabling human and robotic space exploration and discovery: antarctic lessons learned. In: Space, Long Beach California, USA, p. 6756 (2005)

    Google Scholar 

  32. Kron, A., Schmidt, G., Petzold, B., Zah, M., Hinterseer, P., Steinbach, E.: Disposal of explosive ordnances by use of a bimanual haptic telepresence system. In: IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, vol. 2, pp. 1968–1973 (2004)

    Google Scholar 

  33. Talha, M., Ghalamzan, E.A.M., Takahashi, C., Kuo, J., Ingamells, W., Stolkin, R.: Towards robotic decommissioning of legacy nuclear plant: Results of human-factors experiments with tele-robotic manipulation, and a discussion of challenges and approaches for decommissioning. In: IEEE International Symposium on Safety, Security, and Rescue Robotics, Lausanne, Switzerland, pp. 166–173 (2016)

    Google Scholar 

  34. West, C., Monk, S., Montazeri, A., Taylor, C.J.: A vision-based positioning system with inverse dead-zone control for dual-hydraulic manipulators. In: UKACC 12th International Conference on Control, Sheffield, UK, IEEE (2018)

    Google Scholar 

  35. Tsitsimpelis, I., Taylor, C.J., Lennox, B., Joyce, M.J.: A review of ground-based robotic systems for the characterization of nuclear environments. Progress Nuclear Energy 111, 109–124 (2019)

    Article  Google Scholar 

  36. Colgate, E., Bicchi, A., Peshkin, M.A., Colgate, J.E.: Safety for physical human-robot interaction. In: Springer Handbook of Robotics pp. 1335–1348. Springer (2008)

    Google Scholar 

  37. Kulić, D., Croft, E.: Pre-collision safety strategies for human-robot interaction. Auton. Robots 22(2), 149–164 (2007)

    Article  Google Scholar 

  38. RIA/ANSI R15.06—1999 American National Standard for Industrial Robots and Robot Systems—Safety Requirements. American National Standards Institute. New York

    Google Scholar 

  39. Hussein, M.A., Ali, A.S., Elmisery, F., Mostafa, R.: Motion control of robot by using kinect sensor. Res. J. Appl. Sci. Eng. Tech. 8(11), 1384–1388 (2014)

    Article  Google Scholar 

  40. Marturi, N., Rastegarpanah, A., Takahashi, C., Adjigble, M., Stolkin, R., Zurek, S., Kopicki, M., Talha, M., Kuo, J.A., Bekiroglu, Y.: Advanced robotic manipulation for nuclear decommissioning: a pilot study on tele-operation and autonomy. In: Proceedings of the International Conference on Robotics and Automation for Humanitarian Applications, Kerala, India, pp. 1–8 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported in the UK by the EPSRC project EP/R02572X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Monk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monk, S.D. et al. (2021). A Prototype Telepresence Robot for Use in the Investigation of Ebola and Lassa Virus Threatened Villages in Nigeria. In: Selvaraj, H., Chmaj, G., Zydek, D. (eds) Proceedings of the 27th International Conference on Systems Engineering, ICSEng 2020. ICSEng 2020. Lecture Notes in Networks and Systems, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-030-65796-3_4

Download citation

Publish with us

Policies and ethics