Skip to main content

Comfort and Energy Implications of Urban Microclimate in High Latitudes

  • Chapter
  • First Online:
Urban Microclimate Modelling for Comfort and Energy Studies

Abstract

This chapter presents the urban microclimate impact on comfort and energy demand by buildings located in high-latitude temperate regions, characterised by higher heating demand compared to cooling. It focusses on London as a case study of such a location and presents results from measurements and computational studies during the last 20 years. The relationship of surface and air UHI in high-latitude cities is first described as well as the relationship between UHI and building energy demand; results from London are used to illustrate the impact. It follows a description of urban albedo outlining contributing parameters. Modelling tools enabling the study of microclimate impact on indoor thermal conditions are then described. Recent results of a study of urban albedo in London and the application of modelling tools are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CFD:

Computational fluid dynamics

DTM:

Dynamic thermal modelling

EPBD:

Energy Performance of Buildings Directive

H/L:

Canyon aspect ratio

IPCC:

Intergovernmental Panel on Climate Change

SUHI:

Surface urban heat island

TRY:

Typical reference year

UA:

Urban albedo

UHI:

Urban heat island

References

  • Akbari, H., & Kolokotsa, D. (2016). Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 133, 834–842.

    Article  Google Scholar 

  • Alchapar, N. L., & Correa, E. N. (2016). The use of reflective materials as a strategy for urban cooling in an arid “OASIS” city. Sustainable Cities and Society, 27, 1–14. https://doi.org/10.1016/j.scs.2016.08.015.

    Article  Google Scholar 

  • Bueno, B., Norford, L., Hidalgo, J., & Pigeon, G. (2013). The urban weather generator. Journal of Building Performance Simulation, 6(4), 269–281. https://doi.org/10.1080/19401493.2012.718797.

    Article  Google Scholar 

  • Chen, D., & Weiteng, H. (2013). Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environmental Development, 6, 69–79. https://doi.org/10.1016/j.envdev.2013.03.007].

    Article  Google Scholar 

  • Erell, E., Pearlmutter, D., Boneh, D., & Kutiel, P. B. (2014). Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Climate, 10, 367–386.

    Article  Google Scholar 

  • Ghiaus, C., Allard, F., Georgiakis, C., Santamouris, M., Roulet, C.-A., Germano, M., & Tillenkamp, F. (2004). URBVENT WP1 final report: Soft computing of natural ventilation potential. In URBVENT: Natural ventilation in urban areas-potential assessment and optimal façade design. European commission. London: Routledge. https://doi.org/10.4324/9781849772068.

    Chapter  Google Scholar 

  • Hoppe, P. (1999). The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71–75.

    Article  Google Scholar 

  • Huttner, S., & Bruse, M. (2009). Numerical modeling of the urban climate—A preview on ENVI-MET 4.0, in The seventh International Conference on Urban Climate. Yokohama, Japan. Retrieved from http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/382880-2-090514010851-002.pdf.

  • Kolokotroni, M., & Giridharan, R. (2008). Urban Heat Island Intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy, 82, 986–998.

    Article  Google Scholar 

  • Kolokotroni, M., Giannitsaris, I., & Watkins, R. (2006). The effect of the London Urban Heat Island on building summer cooling demand and night ventilation strategies. Solar Energy, 80(4), 383–392.

    Article  Google Scholar 

  • Kolokotroni, M., Ren, X., Davies, M., & Mavrogianni, A. (2012). London’s urban heat island: Impact on current and future energy consumption for heating and cooling. Energy and Buildings, 47, 302–311.

    Article  Google Scholar 

  • Kolokotroni, M., Gowreesunder, B., & Giridharan, R. (2013). Cool roof technology in London: An experimental and modelling study. Energy and Buildings, 67, 658–667. https://doi.org/10.1016/j.enbuild.2011.07.011.

    Article  Google Scholar 

  • Levinson, R. (2019). Using solar availability factors to adjust cool-wall energy savings for shading and reflection by neighboring buildings. Solar Energy, 180, 717–734. https://doi.org/10.1016/j.solener.2019.01.023.

    Article  Google Scholar 

  • Maciel, C. R., & Kolokotroni, M. (2017). Cool materials in the urban built environment to mitigate heat islands: Potential consequences for building ventilation. 38th AIVC International Conference, 13–14 Sep 2017, Nottingham, UK.

    Google Scholar 

  • Maciel, C. R., Kolokotroni, M., Nogueira, M. C. J. A., Giridharan, R., & Watkins, R. (2013). The impact of surface characteristics on ambient temperature at urban micro-scale: Comparative field study in two climates. International Journal of Low Carbon Technologies. https://doi.org/10.1093/ijlct/ctt016.

  • Mao, J., Yang, J. H., Afshari, A., & Norford, L. K. (2017). Global sensitivity analysis of an urban microclimate system under uncertainty: Design and case study. Building and Environment, 124, 153–170. https://doi.org/10.1016/j.buildenv.2017.08.011.

    Article  Google Scholar 

  • Nikolopoulou M, et al. (2020). Developing an Urban Albedo Calculator for London: The experimental campaign supporting the development of the tool. CIBSE Technical Symposium. September 2020.

    Google Scholar 

  • Pawlak, W., & Fortuniak, K. (2003). Application of the physical model to study effective albedo of the urban canyon, in: Fifth International Conference on Urban Climate, Lodz, Poland.

    Google Scholar 

  • Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Breon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46(2), 696–703.

    Article  Google Scholar 

  • Qin, Y. (2015). Urban canyon albedo and its implication on the use of reflective cool pavements. Energy and Buildings, 96, 86–94.

    Article  Google Scholar 

  • ReCO2ST. (2020). Residential Retrofit assessment platform and demonstrations for near zero energy and CO2 emissions with optimum cost, health, comfort and environmental quality. https://reco2st.eu/

  • Salvati, A., & Kolokotroni, M. (2019). Microclimate data for building energy modelling: Study on ENVI-Met forcing data. In V. Corrado, E. Fabrizio, A. Gasparella, & F. Patuzzi (Eds.), Proceedings of the 16th IBPSA Conference 2019, 2–4 September 2019, Rome, Italy (pp. 3361–3368). Rome: IBPSA. https://doi.org/10.26868/25222708.2019.210544.

    Chapter  Google Scholar 

  • Salvati, A., & Kolokotroni, M. (2020a). Impact of urban albedo on microclimate and thermal comfort over a heat wave event in London. In S. Roaf, F. Nicol, & W. Finlayson (Eds.), WINDSOR 2020: Resilient Comfort. Proceedings. Cumberland Lodge, 16–19 April 2020, Windsor UK (pp. 566–578). London: WINDSOR.

    Google Scholar 

  • Salvati, A. and Kolokotroni, M. (2020b). Impact of urban albedo on microclimate: Computational investigation in London. 35th PLEA Conference, sustainable architecture and urban design, planning post carbon cities, A Coruna, Spain, 1–3 September 2020.

    Google Scholar 

  • Salvati, A., Palme, M., Chiesa, G., & Kolokotroni, M. (2020). Built form, urban climate and building energy modelling: Case-studies in Rome and Antofagasta. Journal of Building Performance Simulation, 13, 209–225. https://doi.org/10.1080/19401493.2019.1707876.

    Article  Google Scholar 

  • Santamouris, M. (2007). Heat Island Research in Europe: The state of the art. Advances in Building Energy Research, 1(1), 123–150. https://doi.org/10.1080/17512549.2007.9687272.

    Article  Google Scholar 

  • Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment, 512–513, 582–598.

    Article  Google Scholar 

  • Santamouris, M. (2016). Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Solar Energy, 128, 61–94.

    Article  Google Scholar 

  • Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482.

    Article  Google Scholar 

  • Urban Albedo Project. (2019). https://research.kent.ac.uk/urbanalbedo/.

  • Watkins, R., Palmer, J., Kolokotroni, M., & Littlefair, P. (2002a). The London Heat Island—Results from summertime monitoring, Proc. Chartered Institution of Building Services Engineers, Series A. Building Services Engineering Research and Technology, 23(2), 97–106.

    Article  Google Scholar 

  • Watkins, R., Palmer, J., Kolokotroni, M., & Littlefair, P. (2002b). The London Heat Island—Surface and air temperature measurements in summer 2000. ASHRAE Transactions, 108(Pt1), 419–427.

    Google Scholar 

  • World Atlas. (2020). Köppen climate classification system. https://www.worldatlas.com/articles/what-is-the-koppen-climate-classification-system.html.

  • Xu, X., Azari Jafari, H., Gregory, J., Norford, L., & Kirchain, E. (2020). An integrated model for quantifying the impacts of pavement albedo and urban morphology on building energy demand. Energy and Buildings, 211, 109759.

    Article  Google Scholar 

  • Yang, X., & Li, Y. (2015). The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Building and Environment, 90, 146–156.

    Article  Google Scholar 

  • Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 152, 51–61.

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by EPSRC, UK, under the project ‘Urban albedo computation in high latitude locations: An experimental approach’ (EP/P02517X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kolokotroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolokotroni, M., Salvati, A. (2021). Comfort and Energy Implications of Urban Microclimate in High Latitudes. In: Palme, M., Salvati, A. (eds) Urban Microclimate Modelling for Comfort and Energy Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-65421-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65421-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65420-7

  • Online ISBN: 978-3-030-65421-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics