Skip to main content

Pharmacological Properties of the Plant-Derived Natural products Cannabinoids and Implications for Cardiovascular Health

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1308))

Abstract

The global march towards legalization of marijuana consumption is pursued in reason of the supposed harmless properties of this plant. Actually, a wide range of cannabinoids is endogenously produced and interacts with different classes of receptors ubiquitously distributed in the human body. Such endocannabinoid system (ECS) modulates several functions in health and disease. However, studies on synthetic ligands with selective agonist/antagonist activity on specific cannabinoid receptors, have clarified how complex the cannabinoid system is. The whole biological activity of cannabis sativa remains difficult to establish, due to the fact that it is a complex mixture of phytocannabinoids with different or even opposing effects. Δ9-tetrahydrocannabinol is the most represented phytocannabinoid in the marijuana plant and then the most studied compound. It has been widely associated with adverse CV effects in marijuana smokers. Conversely, less is known about the role of other phytocannabinoids. Here, we summarized the current knowledge about the effects of phytocannabinoids in CV disease, mainly focusing on atherosclerosis and myocardial infarction. We critically discussed clinical and experimental evidence linking phytocannabinoids to CV disease, attempting at explaining some controversies and suggesting the direction for future studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Organization, W.H (2016) The health and social effects of nonmedical cannabis use. https://www.who.int/substance_abuse/publications/cannabis_report/en/

  2. EMCDDA (2019). European drug report 2018: trends and developments. http://www.emcdda.europa.eu/edr2018_en

  3. Bonaventura A, Montecucco F, Dallegri F, Carbone F, Luscher TF, Camici GG, Liberale L (2019) Novel findings in neutrophil biology and their impact on cardiovascular disease. Cardiovasc Res 115:1266–1285

    Article  CAS  PubMed  Google Scholar 

  4. Liberale L, Dallegri F, Montecucco F, Carbone F (2017) Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost 117:7–18

    Article  PubMed  Google Scholar 

  5. Levitan I, Volkov S, Subbaiah PV (2010) Oxidized ldl: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 13:39–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takeda S, Usami N, Yamamoto I, Watanabe K (2009) Cannabidiol-2′,6′-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitor. Drug Metab Dispos 37:1733–1737

    Article  CAS  PubMed  Google Scholar 

  7. Tall AR, Yvan-Charvet L (2015) Cholesterol, inflammation and innate immunity. Nat Rev Immunol 15:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang LS, Pu J, Han ZH, Hu LH, He B (2009) Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages. Cardiovasc Res 81:805–813

    Article  CAS  PubMed  Google Scholar 

  9. Freeman-Anderson NE, Pickle TG, Netherland CD, Bales A, Buckley NE, Thewke DP (2008) Cannabinoid (cb2) receptor deficiency reduces the susceptibility of macrophages to oxidized ldl/oxysterol-induced apoptosis. J Lipid Res 49:2338–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, Tam J, Han T, Mukhopadhyay B, Skarulis MC et al (2013) Activation of the nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19:1132–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tiyerili V, Zimmer S, Jung S, Wassmann K, Naehle CP, Lutjohann D, Zimmer A, Nickenig G, Wassmann S (2010) Cb1 receptor inhibition leads to decreased vascular at1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res Cardiol 105:465–477

    Article  CAS  PubMed  Google Scholar 

  12. Mukhopadhyay P, Pan H, Rajesh M, Batkai S, Patel V, Harvey-White J, Mukhopadhyay B, Hasko G, Gao B, Mackie K et al (2010) Cb1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol 160:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dol-Gleizes F, Paumelle R, Visentin V, Mares AM, Desitter P, Hennuyer N, Gilde A, Staels B, Schaeffer P, Bono F (2009) Rimonabant, a selective cannabinoid cb1 receptor antagonist, inhibits atherosclerosis in ldl receptor-deficient mice. Arterioscler Thromb Vasc Biol 29:12–18

    Article  CAS  PubMed  Google Scholar 

  14. Hoyer FF, Steinmetz M, Zimmer S, Becker A, Lutjohann D, Buchalla R, Zimmer A, Nickenig G (2011) Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo. J Mol Cell Cardiol 51:1007–1014

    Article  CAS  PubMed  Google Scholar 

  15. Netherland CD, Pickle TG, Bales A, Thewke DP (2010) Cannabinoid receptor type 2 (cb2) deficiency alters atherosclerotic lesion formation in hyperlipidemic ldlr-null mice. Atherosclerosis 213:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Willecke F, Zeschky K, Ortiz Rodriguez A, Colberg C, Auwarter V, Kneisel S, Hutter M, Lozhkin A, Hoppe N, Wolf D et al (2011) Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. PLoS One 6:e19405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steffens S, Veillard NR, Arnaud C, Pelli G, Burger F, Staub C, Karsak M, Zimmer A, Frossard JL, Mach F (2005) Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434:782–786

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Liu Y, Zhang W, Xue J, Wu YZ, Xu W, Liang X, Chen T, Kishimoto C, Yuan Z (2010) Win55212-2 ameliorates atherosclerosis associated with suppression of pro-inflammatory responses in apoe-knockout mice. Eur J Pharmacol 649:285–292

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Y, Yuan Z, Liu Y, Xue J, Tian Y, Liu W, Zhang W, Shen Y, Xu W, Liang X et al (2010) Activation of cannabinoid cb2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules. J Cardiovasc Pharmacol 55:292–298

    Article  CAS  PubMed  Google Scholar 

  20. Yuan M, Kiertscher SM, Cheng Q, Zoumalan R, Tashkin DP, Roth MD (2002) Delta 9-tetrahydrocannabinol regulates th1/th2 cytokine balance in activated human t cells. J Neuroimmunol 133:124–131

    Article  CAS  PubMed  Google Scholar 

  21. Montecucco F, Di Marzo V, da Silva RF, Vuilleumier N, Capettini L, Lenglet S, Pagano S, Piscitelli F, Quintao S, Bertolotto M et al (2012) The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur Heart J 33:846–856

    Article  CAS  PubMed  Google Scholar 

  22. Rajesh M, Mukhopadhyay P, Batkai S, Hasko G, Liaudet L, Huffman JW, Csiszar A, Ungvari Z, Mackie K, Chatterjee S et al (2007) Cb2-receptor stimulation attenuates tnf-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 293:H2210–H2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rajesh M, Mukhopadhyay P, Hasko G, Huffman JW, Mackie K, Pacher P (2008) Cb2 cannabinoid receptor agonists attenuate tnf-alpha-induced human vascular smooth muscle cell proliferation and migration. Br J Pharmacol 153:347–357

    Article  CAS  PubMed  Google Scholar 

  24. Molica F, Burger F, Thomas A, Staub C, Tailleux A, Staels B, Pelli G, Zimmer A, Cravatt B, Matter CM et al (2013) Endogenous cannabinoid receptor cb1 activation promotes vascular smooth-muscle cell proliferation and neointima formation. J Lipid Res 54:1360–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoyer FF, Khoury M, Slomka H, Kebschull M, Lerner R, Lutz B, Schott H, Lutjohann D, Wojtalla A, Becker A et al (2014) Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice. J Mol Cell Cardiol 66:126–132

    Article  CAS  PubMed  Google Scholar 

  26. Lenglet S, Thomas A, Soehnlein O, Montecucco F, Burger F, Pelli G, Galan K, Cravatt B, Staub C, Steffens S (2013) Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol 33:215–223

    Article  CAS  PubMed  Google Scholar 

  27. Vujic N, Schlager S, Eichmann TO, Madreiter-Sokolowski CT, Goeritzer M, Rainer S, Schauer S, Rosenberger A, Woelfler A, Doddapattar P et al (2016) Monoglyceride lipase deficiency modulates endocannabinoid signaling and improves plaque stability in apoe-knockout mice. Atherosclerosis 244:9–21

    Article  CAS  PubMed  Google Scholar 

  28. Jehle J, Schone B, Bagheri S, Avraamidou E, Danisch M, Frank I, Pfeifer P, Bindila L, Lutz B, Lutjohann D et al (2018) Elevated levels of 2-arachidonoylglycerol promote atherogenesis in apoe−/− mice. PLoS One 13:e0197751

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guillamat Prats R, Rami M, Ring L, Rinne P, Lauer E, Lenglet S, Thomas A, Pagano S, Vuilleumier N, Cravatt BF et al (2019) Deficiency of monoacylglycerol lipase enhances igm plasma levels and limits atherogenesis in a cb2-dependent manner. Thromb Haemost 119:348–351

    Article  PubMed  Google Scholar 

  30. Kinsey SG, Wise LE, Ramesh D, Abdullah R, Selley DE, Cravatt BF, Lichtman AH (2013) Repeated low-dose administration of the monoacylglycerol lipase inhibitor jzl184 retains cannabinoid receptor type 1-mediated antinociceptive and gastroprotective effects. J Pharmacol Exp Ther 345:492–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guillamat-Prats R, Rami M, Herzig S, Steffens S (2019) Endocannabinoid signalling in atherosclerosis and related metabolic complications. Thromb Haemost 119:567–575

    Article  PubMed  Google Scholar 

  32. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor gpr55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ross RA (2011) L-alpha-lysophosphatidylinositol meets gpr55: a deadly relationship. Trends Pharmacol Sci 32:265–269

    Article  CAS  PubMed  Google Scholar 

  34. Chiurchiu V, Lanuti M, De Bardi M, Battistini L, Maccarrone M (2015) The differential characterization of gpr55 receptor in human peripheral blood reveals a distinctive expression in monocytes and nk cells and a proinflammatory role in these innate cells. Int Immunol 27:153–160

    Article  CAS  PubMed  Google Scholar 

  35. Montecucco F, Bondarenko AI, Lenglet S, Burger F, Piscitelli F, Carbone F, Roth A, Liberale L, Dallegri F, Brandt KJ et al (2016) Treatment with the gpr55 antagonist cid16020046 increases neutrophil activation in mouse atherogenesis. Thromb Haemost 116:987–997

    Article  PubMed  Google Scholar 

  36. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) Gpr55 is a cannabinoid receptor that increases intracellular calcium and inhibits m current. Proc Natl Acad Sci U S A 105:2699–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rinne P, Guillamat-Prats R, Rami M, Bindila L, Ring L, Lyytikainen LP, Raitoharju E, Oksala N, Lehtimaki T, Weber C et al (2018) Palmitoylethanolamide promotes a proresolving macrophage phenotype and attenuates atherosclerotic plaque formation. Arterioscler Thromb Vasc Biol 38:2562–2575

    Article  CAS  PubMed  Google Scholar 

  38. Pacher P, Steffens S, Hasko G, Schindler TH, Kunos G (2018) Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 15:151–166

    Article  CAS  PubMed  Google Scholar 

  39. Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE (2001) Triggering myocardial infarction by marijuana. Circulation 103:2805–2809

    Article  CAS  PubMed  Google Scholar 

  40. Mukamal KJ, Maclure M, Muller JE, Mittleman MA (2008) An exploratory prospective study of marijuana use and mortality following acute myocardial infarction. Am Heart J 155:465–470

    Article  PubMed  PubMed Central  Google Scholar 

  41. Frost L, Mostofsky E, Rosenbloom JI, Mukamal KJ, Mittleman MA (2013) Marijuana use and long-term mortality among survivors of acute myocardial infarction. Am Heart J 165:170–175

    Article  PubMed  Google Scholar 

  42. Alshaarawy O, Anthony JC (2015) Cannabis smoking and serum c-reactive protein: a quantile regressions approach based on nhanes 2005-2010. Drug Alcohol Depend 147:203–207

    Article  CAS  PubMed  Google Scholar 

  43. Waldman M, Hochhauser E, Fishbein M, Aravot D, Shainberg A, Sarne Y (2013) An ultra-low dose of tetrahydrocannabinol provides cardioprotection. Biochem Pharmacol 85:1626–1633

    Article  CAS  PubMed  Google Scholar 

  44. Dudok B, Barna L, Ledri M, Szabo SI, Szabadits E, Pinter B, Woodhams SG, Henstridge CM, Balla GY, Nyilas R et al (2015) Cell-specific storm super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nat Neurosci 18:75–86

    Article  CAS  PubMed  Google Scholar 

  45. Bilkei-Gorzo A, Albayram O, Draffehn A, Michel K, Piyanova A, Oppenheimer H, Dvir-Ginzberg M, Racz I, Ulas T, Imbeault S et al (2017) A chronic low dose of delta(9)-tetrahydrocannabinol (thc) restores cognitive function in old mice. Nat Med 23:782–787

    Article  CAS  PubMed  Google Scholar 

  46. Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D et al (2017) Cannabidiol: state of the art and new challenges for therapeutic applications. Pharmacol Ther 175:133–150

    Article  CAS  PubMed  Google Scholar 

  47. Durst R, Danenberg H, Gallily R, Mechoulam R, Meir K, Grad E, Beeri R, Pugatsch T, Tarsish E, Lotan C (2007) Cannabidiol, a nonpsychoactive cannabis constituent, protects against myocardial ischemic reperfusion injury. Am J Physiol Heart Circ Physiol 293:H3602–H3607

    Article  CAS  PubMed  Google Scholar 

  48. Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Mariano-Souza DP, Quinteiro-Filho WM, Akamine AT, Almeida VI, Quevedo J, Dal-Pizzol F et al (2012) Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine a(2a) receptor. Eur J Pharmacol 678:78–85

    Article  CAS  PubMed  Google Scholar 

  49. Ribeiro A, Almeida VI, Costola-de-Souza C, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Gimenes-Junior JA, Akamine AT, Crippa JA, Tavares-de-Lima W et al (2015) Cannabidiol improves lung function and inflammation in mice submitted to lps-induced acute lung injury. Immunopharmacol Immunotoxicol 37:35–41

    Article  CAS  PubMed  Google Scholar 

  50. Rajesh M, Mukhopadhyay P, Batkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horvath B, Mukhopadhyay B, Becker L et al (2010) Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 56:2115–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fouad AA, Albuali WH, Al-Mulhim AS, Jresat I (2013) Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity. Environ Toxicol Pharmacol 36:347–357

    Article  CAS  PubMed  Google Scholar 

  52. Hao E, Mukhopadhyay P, Cao Z, Erdelyi K, Holovac E, Liaudet L, Lee WS, Hasko G, Mechoulam R, Pacher P (2015) Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis. Mol Med 21:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee WS, Erdelyi K, Matyas C, Mukhopadhyay P, Varga ZV, Liaudet L, Hasku G, Cihakova D, Mechoulam R, Pacher P (2016) Cannabidiol limits t cell-mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation. Mol Med 22:136–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Russo EB (2011) Taming thc: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 163:1344–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL, Stott C, Bell JD, O’Sullivan SE, Tan GD (2016) Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care 39:1777–1786

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Montecucco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liberale, L., Montecucco, F., Carbone, F. (2021). Pharmacological Properties of the Plant-Derived Natural products Cannabinoids and Implications for Cardiovascular Health. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_17

Download citation

Publish with us

Policies and ethics