Skip to main content

Modeling of Carbon Monoxide Oxidation on Gold Nanoparticles: Is There Oscillatory Mode?

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing V (CSIT 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1293))

Included in the following conference series:

  • 405 Accesses

Abstract

The stability conditions for mathematical models of carbon monoxide oxidation on the surface of gold nanoparticles are investigated. The cases of reaction mechanisms of one-step and step-by-step transformation of reagents are consecutively considered. Using the stability analysis by Lyapunov method, it is shown that models which take into account the possibility of structural changes of the catalyst surface can predict the occurrence of oscillatory mode in the system as a result of Hopf instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freund, H.-J., Meijer, G., Scheffler, M., Schlogl, R., Wolf, M.: CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50(43), 10064–10094 (2011). https://doi.org/10.1002/anie.201101378

    Article  Google Scholar 

  2. Krischer, K., Eiswirth, M., Ertl, G.: Oscillatory CO oxidation on Pt(110): modeling of temporal self-organization. J. Chem. Phys. 96(12), 9161–9172 (1992). https://doi.org/10.1063/1.462226

    Article  Google Scholar 

  3. Haruta, M., Kobayashi, T., Sano, H., Yamada, N.: Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below \(0^\circ \text{ C }\). Chem. Lett. 16(2), 405–408 (1987). https://doi.org/10.1246/cl.1987.405

    Article  Google Scholar 

  4. Valden, M., Lai, X., Goodman, D.W.: Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 281(5383), 1647–1650 (1998). https://doi.org/10.1126/science.281.5383.1647

    Article  Google Scholar 

  5. Ryzha, I., Matseliukh, M.: Carbon monoxide oxidation on the Pt-catalyst: modelling and stability. Math. Model. Comput. 4(1), 96–106 (2017). https://doi.org/10.23939/mmc2017.01.096

    Article  Google Scholar 

  6. Kostrobij, P., Ryzha, I., Markovych, B.: Mathematical model of carbon monoxide oxidation: influence of the catalyst surface structure. Math. Model. Comput. 5(2), 158–168 (2018). https://doi.org/10.23939/mmc2018.02.158

    Article  Google Scholar 

  7. Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Book  Google Scholar 

  8. Hoyle, R.: Pattern Formation. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  9. Imbihl, R., Ertl, G.: Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95(3), 697–733 (1995). https://doi.org/10.1021/cr00035a012

    Article  Google Scholar 

  10. Gritsch, T., Coulman, D., Behm, R.J., Ertl, G.: Mechanism of the CO-induced \(1 \times 2\rightarrow 1 \times 1\) structural transformation of Pt(110). Phys. Rev. Lett. 63(10), 1086–1089 (1989). https://doi.org/10.1103/physrevlett.63.1086

    Article  Google Scholar 

  11. Slinko, M.M., Jaeger, N.I.: Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis), vol. 86. Elsevier Science, Amsterdam (1994)

    Google Scholar 

  12. Qiao, L., Li, X., Kevrekidis, I.G., Punckt, C., Rotermund, H.H.: Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation. Phys. Rev. E 77(3), 036214 (2008). https://doi.org/10.1103/PhysRevE.77.036214

    Article  Google Scholar 

  13. Uchiyama, T., Yoshida, H., Kuwauchi, Y., Ichikawa, S., Shimada, S., Haruta, M., Takeda, S.: Systematic morphology changes of gold nanoparticles supported on \({\text{ CeO }}_{2}\) during CO oxidation. Angew. Chem. Int. Ed. 50(43), 10157–10160 (2011). https://doi.org/10.1002/anie.201102487

    Article  Google Scholar 

  14. Elsgolts, L.: Differential Equations and the Calculus of Variation. Kniga po Trebovaniju, Moskva (2012). (in Russian)

    Google Scholar 

  15. Zhdanov, V.P.: Kinetic models of CO oxidation on gold nanoparticles. Surf. Sci. 630, 286–293 (2014). https://doi.org/10.1016/j.susc.2014.08.025

    Article  Google Scholar 

  16. Reichert, C., Starke, J., Eiswirth, M.: Stochastic model of CO oxidation on platinum surfaces and deterministic limit. J. Chem. Phys. 115(10), 4829–4838 (2001). https://doi.org/10.1063/1.1391255

    Article  Google Scholar 

  17. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers: Definitions, Theorems and Formulas for Reference and Review. Dover Publications, New York (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Ryzha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostrobij, P., Ryzha, I. (2021). Modeling of Carbon Monoxide Oxidation on Gold Nanoparticles: Is There Oscillatory Mode?. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing V. CSIT 2020. Advances in Intelligent Systems and Computing, vol 1293. Springer, Cham. https://doi.org/10.1007/978-3-030-63270-0_34

Download citation

Publish with us

Policies and ethics