Abstract
In this paper, a deep learning based hyperspectral image analysis for detecting contaminated shrimp is proposed. The ability of distinguishing shrimps into two classes: clean and contaminated shrimps is visualized by t-distributed Stochastic Neighbor Embedding (t-SNE) using spectral feature data. Using only some small data set of hyperspectral images of shrimps, a simple processing technique is applied to generate enough data for training a deep neural network (DNN) with high reliability. Our results attain the accuracy of 98% and F1-score over 94%. This works confirms that with only few data samples, Hyperspectral Imaging processing technique together with DNN can be used to classify abnormality in agricultural productions like shrimp.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Schelkanova, I., Pandya, A., Muhaseen, A., Saiko, G., Douplik, A.: 13 - early optical diagnosis of pressure ulcers. In: Igor, M. (ed.) Biophotonics for Medical Applications, pp. 347–375. Woodhead Publishing (2015)
Vasefi, F., MacKinnon, N., Farkas, D.L.: Chapter 16 - hyperspectral and multispectral imaging in dermatology. In: Hamblin, M.R., Avci, P., Gupta, G.K. (eds.) Imaging in Dermatology, pp. 187–201. Academic Press, Boston (2016)
Yu, X., Tang, L., Wu, X., Lu, H.: Nondestructive freshness discriminating of shrimp using visible/near-infrared hyperspectral imaging technique and deep learning algorithm. J. Food Anal. Methods 11, 768–780 (2018)
Al-Sarayreh, M., Reis, M., Yan, W., Klette, R.: Detection of red-meat adulteration by deep spectral-spatial features in hyperspectral images. J. Imaging 4, 63 (2018)
Li, X., Li, R., Wang, M., Liu, Y., Zhang, B., Zhou, J.C.: Hyperspectral imaging and their applications in the nondestructive quality assessment of fruits and vegetables (2017). https://doi.org/10.5772/intechopen.72250
Specim: Specim FX10 - user guide 1.0. Specim imaging Oy Ltd
Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q.: Deep learning for remote sensing image classification: a survey. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, p. e1264 (May 2018). https://doi.org/10.1002/widm.1264
Wang, W., et al.: Medical image classification using deep learning. In: Chen, Y.-W., Jain, L.C. (eds.) Deep Learning in Healthcare. ISRL, vol. 171, pp. 33–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32606-7_3
Lu, Y.: Food image recognition by using convolutional neural networks (CNNs) (December 2016)
Thanasarn, N., Chaiprapat, S., Waiyakan, K., Thongkaew, K.: Automated discrimination of deveined shrimps based on grayscale image parameters. J. Food Process Eng. 42, e13041 (2019). https://doi.org/10.1111/jfpe.13041
Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using the HSV color space for image retrieval. In: Proceedings of International Conference on Image Processing, vol. 2, pp. II-589 (February 2002). https://doi.org/10.1109/ICIP.2002.1040019
Russell, B., Torralba, A., Murphy, K., Freeman, W.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008). https://doi.org/10.1007/s11263-007-0090-8
Hahnloser, R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405(6789), 947–951 (2000)
Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS, vol. 930, pp. 195–201. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59497-3_175
Kingma, P., Lei Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980v9 (2014)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Acknowledgement
We thank Minh Phu seafood corporation for providing hyperspectral imaging data and inspiring us to realize this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Nguyen, MH., Nguyen-Thi, XH., Pham, CN., Lê, N.C., Han, HD. (2020). Deep Learning Based Hyperspectral Images Analysis for Shrimp Contaminated Detection. In: Vo, NS., Hoang, VP. (eds) Industrial Networks and Intelligent Systems. INISCOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-030-63083-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-63083-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63082-9
Online ISBN: 978-3-030-63083-6
eBook Packages: Computer ScienceComputer Science (R0)