Skip to main content

Abstract

Several different applications of thermosyphon assisted equipment are described in this chapter.  First, the use of thermosyphpns to recover part of the water lost to the ambient in cooling towers is discussed. Following, the use of thermosyphons for the solar heating of house internal ambient is presented. In the sequence, the use of thermosyphons in ovens, to promote efficient consumption of energy and the uniform temperature and humidity distributions is described. Finally, the use of thermosyphons in heating of oil storage tanks and in gas pumping and distributing stations, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASHRAE Handbook Fundamentals Inch-Pound System, ASHRAE (2001)

    Google Scholar 

  • Akachi, H., Structure of a heat pipe, Patent US4921041A (1990)

    Google Scholar 

  • Al-Bassan, E., Maheshwari, G.P.: A New Scheme For Cooling Water Conservation in Arid-Zone Countries. Energy 36, 3985–3991 (2011)

    Article  Google Scholar 

  • Argyropoulos, D., Müller, J.: Effect of Convective Drying on Quality of Lemon Balm (Melissa Officinalis), 11th International Congress On Engineering And Food. Procedia Food Science 1, 1932–1939 (2011)

    Article  Google Scholar 

  • Argyropoulos, D., Alex, R., Kohler, R. and Müller, J., Moisture Sorption Isotherms and Isosteric Heat of Sorption of Leaves and Stems of Lemon Balm (Melissa Officinalis L.) Established by Dynamic Vapor Sorption, Lwt - Food Science And Technology, 47, 2, 324–331 (2012)

    Google Scholar 

  • Ashby, M.F.: A First Report on Sintering Diagrams. Acta Metall. 22, 275–289 (1974)

    Article  Google Scholar 

  • Asvapoositkul, W., Kuansathan, M.: Compartive Evaluation of Hybrid (Dry/Wet) Cooling Tower. Appl. Therm. Eng. 71, 83–93 (2014)

    Article  Google Scholar 

  • Bedingfield, C.H., Drew, T.B.: Analogy between Heat Transfer and Mass Transfer. Ind. Eng. Chem. 42(6), 1164–1173 (1950)

    Article  Google Scholar 

  • Bellani, P., Milanez, F., Mantelli, M., Filippeschi, S., Mameli, M., Fantozzi, F.: Theoretical and Experimental Analyses of the Thermal Resistance of a Loop Thermosyphon for Passive Solar Heating of Buildings. Interfacial Phenomena and Heat Transfer 7(1), 57–68 (2019)

    Article  Google Scholar 

  • Bellani, P., Milanez, F. H., Mantelli, M. B. H., Filippeschi, S., Mameli,, M. and Fantozzi, F., Experimental Studies on a Loop Thermosyphon for Solar Heating of Buildings, Proc. of 9th World Conf. on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Iguazu Falls, Brazil (2017)

    Google Scholar 

  • Bergman, T.L., Lavine, A.S., Incropera F.P. and Dewitt, D.P.: Fundamentals of Heat and Mass Transfer, 7th edn. Wiley and Sons (2016)

    Google Scholar 

  • Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.: Thermophysical Properties of High Porosity Metal Foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)

    Article  MATH  Google Scholar 

  • Brennan, P. J., Thienen, L., Swanson, T., Morgan, M.: Flight Data for the Cryogenic Heat Pipes (CRYOHP) Experiment”, AIAA Paper No. 93–2735 (1993)

    Google Scholar 

  • Castro, F. R., Mantelli, M. B. H., Silva, A. K.: Use of Two-Phase Thermosyphons in Cooling Towers: An Experimental Evaluation of Water Recovery, AIAA Int. J. Heat Mass Transf. (2021)

    Google Scholar 

  • Chien, K.H., Lin, Y.T., Chen, Y.R., Yang, K.S., Wang, C.C.: A Novel Design of Pulsating Heat Pipe With Fewer Turns Applicable to All Orientations. Int. J. Heat Mass Transf. 55, 5722–5728 (2012)

    Article  Google Scholar 

  • Churchill, S.W., Bernstein, M.: A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow. J. Heat Transfer 99(2), 300–306 (1977)

    Article  Google Scholar 

  • Cisterna, L. H. R., Caldas, D. M. M., Milanez, F. H. and Mantelli, M. B. H., Theoretical and Experimental Analysis of an Herbs Dryer Assisted by Two-Phase Thermosyphons, Joint 18th International Heat Pipe Conference and 12th International Heat Pipe Symposium, Korea (2016)

    Google Scholar 

  • Costa, C.A.S., Mantelli, M.B.H., Milanese, F.H., Da Silva, A.K., Rucker, C., Furlan, L.T.: Experimental and Numerical Study of an Asphalt Storage Tank in a Reduced Scale. Appl. Therm. Eng. 56, 101–109 (2013)

    Article  Google Scholar 

  • Costa, C.A.S., Miranda, V., Mantelli, M.B.H., Silva, A.K., Modenesi, C.R., Furlan, L.T.: Experimental Study of Flexible, Unstructured Metal Foams as Condensation Structures, Experimental Thermal and Fluid Science, 57, 102–110 (2014)

    Google Scholar 

  • Cremasco, M.A.: Fundamentos de Transferência de Massa, 3rd edn. Editora Edgard Blücher Ltda, São Paulo (2015).(in Portuguese)

    Google Scholar 

  • Czubinski, F.F., Mantelli, M.B.H., Passos, J.C.: Condensation on Downward-Facing Surfaces Subjected to Upstream Flow of Air-Vapor Mixture. Exp. Thermal Fluid Sci. 47, 90–97 (2013)

    Article  Google Scholar 

  • Delforge, P., Whitney, J., Data Center Efficiency Assessment, Technical Report, Natural Resources Defense Council, New York (2014)

    Google Scholar 

  • Fantozzi, F., Filippeschi, S., Mameli, M., Nesi, S., Cillari, G., Mantelli, M.B.H., Milanez, F.H.: An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings. J. Phys: Conf. Ser. 796, 12043 (2017)

    Google Scholar 

  • Fantozzi, F, Filippeschi, S., Mameli, M.; Mantelli, M. B. H. and Milanez, F. H., How a wall thermosyphon can enhance the energy savings in a prefabricated house in Italy. In: 18TH IHPC AND 12TH IHPS. Jeju, Korea: Jun. 2016

    Google Scholar 

  • Florez, J.P.M., Mantelli, M.B.H.: Thermal Model for Sintered Cylindrical Evaporators of Loop Heat Pipes. J. Thermophys. Heat Transfer 32, 1–13 (2016)

    Google Scholar 

  • Fuller, E.N., Schettler, P.D., Giddings, J.C.: New Method For Prediction Of Binary Gas-Phase Diffusion Coefficients. Ind. Eng. Chem. 58(5), 18–27 (1966)

    Article  Google Scholar 

  • Gerasimov, Y.F., Maydanik, Y.F., Shchogolev, G.T.: Low-temperature heat pipes with separate channels for vapor and liquid. Journal of Engineering Physics 28, 683–685 (1975)

    Article  Google Scholar 

  • Ghosh, R., Ray, T.K., Ganguly, R.: Cooling Tower Fog Harvesting in Power Plants–A Pilot Study. Energy 89, 1018–1028 (2015)

    Article  Google Scholar 

  • Hasatani, M., Arai, N., Harui, H., Itaya, Y., Fushida, N., Hori, C.: Effect of the Drying on Heat Transfer of Bread During Baking in Oven. Drying Technology an International Journal 10, 623–639 (1992)

    Article  Google Scholar 

  • Hashimoro, H., Kaminaga, F.: Heat Transfer Characteristics in A Condenser of Closed Two-Phase Thermosyphon: Effect of Entrainment on Heat Transfer Deterioration. Heat Transfer-Asian Research 31(3), 212–225 (2002)

    Article  Google Scholar 

  • Hensley, J.C. (ed) in: Cooling Tower Fundamentals, 2nd ed., SPX Cooling Technologies, USA (2009)

    Google Scholar 

  • Hisrchfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)

    Google Scholar 

  • Holowaty, S.A., Ramallo, L.A., Schmalko, M.E.: Intermittent Drying Simulation in Deep Bed Dryer Of Yerba Mate. Journal of Food Enginnering 111, 110–114 (2012)

    Article  Google Scholar 

  • Hu, Z., He, W., Ji, J., Zhang, S.: A Review on the Application of Trombe Wall System, Buildings. Renew. Sustain. Energy Rev. 70, 976–987 (2017)

    Article  Google Scholar 

  • Incropera, F.P., DeWitt, D.P.: Fundamentos de Transferência de Calor e de Massa. LTC, Rio de Janeiro (2008)

    Google Scholar 

  • Jasper, J.J.: The Surface of Pure Liquid Compounds. J. Phys. Chem. Ref. Data 1, 841–1010 (1972)

    Article  Google Scholar 

  • Kim, B.H., Peterson, G.P.: Analysis of the Critical Weber Number at the Onset of Liquid Entrainment in Capillary-Driven Heat Pipes. Int. J. Heat Mass Transfer 38(8), 1427–1442 (1995)

    Article  Google Scholar 

  • Kiranoudis, C.T.: Design and Operational Performance of Conveyor Belt Drying Structures. Chem. Eng. J. 69, 27–38 (1998)

    Article  Google Scholar 

  • Koh, J.C.Y., Sparrow, E.M.: Hartnett, The Two Phase Boundary Layer in Laminar Film Condensation. Int. Journal Heat Mass Transfer 2, 69–82 (1961)

    Article  Google Scholar 

  • Kutateladze, S.S.: Semi-Emprirical Theory of Film Condensation of Pure Vapours. Int. Journal Heat Mass Transfer 25, 653–660 (1982)

    Article  Google Scholar 

  • Lindahl, P.A.: Plume Abatement. Power Engineering, Pennwell Publishing Corporation 113(11), 28–30 (2009)

    Google Scholar 

  • Lindahl, P.A., Jameson, R.W.: Plume Abatement and Water Conservation With The Wet/Dry Cooling Tower, Proceedings of Cooling Tower Institute Annual Meeting, New Orleans (1993)

    Google Scholar 

  • Lindhal Jr, P. A., Mortensen, K.: Plume Abatement – The Next Generation, Proceedings of Cooling Technology Institute Annual Conference, Houston (2010)

    Google Scholar 

  • Lohse, E., Schmitz, G., Inherently Safe Looped Thermosyphon Cooling System for Aircraft Applications Using Dielectric Fluid H-galden, International Refrigeration and Air Conditioning Conference at Purdue, Purdue University, USA (2012)

    Google Scholar 

  • Lucena, M. C. C., Soares, S. A., Soares, B. J. and Leite, L. F. M., Reologia de Asfaltos Brasileiros Puros e Modificados por SBS, in XVIII Transport Research and Teaching Congress, Florianopolis, Brazil (2004) (in Portuguese)

    Google Scholar 

  • Ma, J., Fu, X., Hu, R., Luo, X.: Effect of Inclination Angle on the Performance of a Kind of Vapor Chamber. Journal of Solid State Lighting 1, 1–9 (2014)

    Article  Google Scholar 

  • Maezawa, S. Gi, K., Ishihara, H., Thermal Characteristics of Gas-Loaded Two-Phase Closed Thermosyphon with Gas Reservoir, 4th International Heat Pipe Symposium, Tsukuba, Japan (1994)

    Google Scholar 

  • Mantelli, M.B.H.: Development of Porous Media Thermosyphon Technology for Vapor Recovering in Cross-Current Cooling Towers. Appl. Therm. Eng. 108, 398–413 (2016)

    Article  Google Scholar 

  • Mantelli, M.B.H., Milanez, F.H.: A Loop Thermosyphon for Asphalt Tank Heating, 8th International Heat Pipe Symposium. Kumamoto, Japan (2006)

    Google Scholar 

  • Mantelli, M. B. H.: Thermosyphon Technology for Industrial Applications. In: Vasiliev, L.L. and Kakaç, S., Heat Pipes and Solid Sorption Transformations - Fundamentals and Practical Application, 411–464, CRC Press, Florida (2013)

    Google Scholar 

  • Mantelli, M. B. H., Milanez, F. H., Mielitz, G.. Tree Configuration Thermosyphon Study, Aiaa 38th Thermophysics Conference, Toronto (2005)

    Google Scholar 

  • Mantelli, M.B.H., Study of Closed Two-Phase Thermosyphons for Bakery Oven Applications, Proceedings of the 33rd National Heat Transfer Conference, ASME-NHTC99–205, Albuquerque (1999b)

    Google Scholar 

  • Mantelli, M. B. H. and Milanez, F. H., A Loop Thermosyphon for Asphalt Tank Heating, 8th International Heat Pipe Symposium, Kumamoto, Japan (2006)

    Google Scholar 

  • Mantelli, M. B. H., Milanese, F. H. . Thermal Performance Theoretical Prediction of an Enclosure Heated by Aligned Thermosyphons, 43th Aerospace Sciences Meeting and Exhibit (2005)

    Google Scholar 

  • Milanese, F. H., Mantelli, M. B. H., A New Methodology for Measuring Heat Transfer Coefficients - Application to Thermosyphon Heated Enclosures, 13th International Heat Pipe Conference, Shanghai (2004)

    Google Scholar 

  • Milanez, F.H., Mantelli, M.B.H.: Analytical Model for Thermal Performance Analysis of an Enclosure Heated by Aligned Thermosyphons. J. Thermophys. Heat Transfer 20(2), 267–275 (2006a)

    Article  Google Scholar 

  • Milanez, F.H., Mantelli, M.B.H.: Thermal Characteristics of a Thermosyphon Heated Enclosure. Int. J. Therm. Sci. 45, 504–510 (2006b)

    Article  Google Scholar 

  • Moreira Junior, J., Cisterna, L.H.R., Mantelli, M. B. H., Milanez, F. H., Development of Numerical Tools for Shell-and-Shell Thermosyphon Heat Exchanger Design, 10th Minsk International Seminar of Heat Pipes, Heat Pumps, Refrigerators, Power Sources, Minsk, (2015)

    Google Scholar 

  • Mujumdar, A.S., Handbook of Industrial Drying, 3rd Edn, CRC Press, Taylor and Francis, Boca Raton (2006)

    Google Scholar 

  • Munson, B.R., Young, D.F., Okiishi, T.H., Huebsh, W.W.: Fundamentals of Fluid Mechanics, 6th edn. John Wiley & Sons, Massachusetts (2009)

    Google Scholar 

  • Müller, J., Heindl, A., Drying of Medicinal Plants. In: Bogers, R J, Craker, L. E. and Lange, D., Medicinal And Aromatic Plants - Agricultural, Commercial, Ecological, Legal, Pharmacological And Social Aspects Medicinal and Aromatic plants, 237–252, Springer (2006)

    Google Scholar 

  • Panjeshahi, M.H., Ataei, A., Gharaie, M., Parand, R.: Optimum Design of Cooling Water Systems For Energy And Water Conservation. Chem. Eng. Res. Des. 87, 200–209 (2009)

    Article  Google Scholar 

  • Park, K. J., Vohnikova, Z., Brod, F. P. R., Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.), Journal of Food Enginnering, 51, 193–199 (2002)

    Google Scholar 

  • Park, K. J. B., Park, J. K, Cornejo, F. E. P. and Dal Fabbro, I. M., Considerações Termodinâmicas das Isotermas, Revista Brasileira de Produtos Agroindustriais, Campina Grande, 10, 1, 83–94 (2008)

    Google Scholar 

  • Park, K., Chhatre, S. S., Srinivasan, S., Cohen, R. E. and McKinley, G. H.: Optimal Design of Permeable Fiber Network Structures for Fog Harvesting, Langmuir ACS Publications, 29, 43, 13269–13277 (2013)

    Google Scholar 

  • Peterson, P.F., Tien, C.L.: Gas-Concentration Measurements and Analysis for Gas-Loaded Thermosyphons. ASME Journal of Heat Transfer 110, 743–747 (1988)

    Article  Google Scholar 

  • Pozzobon, J. C., Mantelli, M. B.H and SILVA, A. K., Experimental Study of Unstructured Porous Media Inserts for Water Recovery in a Reduced Scale, Crossflow Cooling Tower, Applied Thermal Engineering, 96, 632–639 (2016)

    Google Scholar 

  • Read, J., Whiteoak, D.: The Shell Bitumen Handbook, 5th edn. Thomas Telford Publishing, London (2003)

    Google Scholar 

  • Reay, D. A., Kew, P. A and Mcglean, R. J., Heat Pipes: theory, design and applications, 6th edn. Elsevier (2014).

    Google Scholar 

  • Reyes, M., Alonso, D., Arias, J.R., Velazquez, A.: Experimental and Theoretical Study of a Vapour Chamber Based Heat Spreader for Avionics Applications. Appl. Therm. Eng. 37, 51–59 (2012)

    Article  Google Scholar 

  • Robinson, A. J., Smith, K., Hughes, T. and Filippeschi S., Heat and Mass Transfer for a Small Diameter Thermosyphon With Low Fill Ratio, International Journal of Thermofluids, 1–2, (2020)

    Google Scholar 

  • Rohani, A.R., Tien, C.L.: Steady Two-Dimensional Heat and Mass Transfer in The Vapor-Gas Region of a Gas Loaded Heat Pipe. ASME Journal of Heat Transfer 95, 377–382 (1973)

    Article  Google Scholar 

  • Rohsenow, W. M.: Boiling. In: Rohsenow, W.M. and Hartnett, J.P (eds) Handbook of Heat Transfer, pp.13.1–13.73. Mc Graw-Hill Inc, New York (1973)

    Google Scholar 

  • Saadatian, O., Sopian, K., Lim, C.H., Asim, N., Sulaiamn, M.Y.: Trombe Walls: a Review of Opportunities and Challenges in Research and Development. Renew. Sustain. Energy Rev. 16(8), 6340–6351 (2012)

    Article  Google Scholar 

  • Sarno, C., Application of Phase Change Systems in Avionics, 16th International Heat Pipe Conference, Lyon, France (2012)

    Google Scholar 

  • Shen, X., Lu, W., Sun, Y., Zhang, Y., Deng, N.: Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery. Appl. Energy 169, 177–186 (2016)

    Article  Google Scholar 

  • Silva, A.K., Mantelli, M.B.H.: Thermal Applicability of Two Phase Thermosyphons in Cooking Chambers - Experimental and Theoretical Analysis. Appl. Therm. Eng. 24, 717–733 (2004)

    Article  Google Scholar 

  • Srinivasan, V., Khandekar, S.: Thermo-Hydrodynamic Transport Phenomena in Partially Wetting Liquid Plugs Moving Inside Micro-Channels”. Sadhana - Indian Academy of Sciences 42, 607–624 (2017)

    Google Scholar 

  • Stephan, K., Abdelsalam, M.: Heat Transfer Correlations for Natural Convection Boiling. Int. J. Of Heat and Mass Transfer 23(1), 73–87 (1980)

    Article  Google Scholar 

  • Sundararajan, T., Ayyaswamy, P.S.: Hydrodynamics and Heat Transfer Associated With Condensation on a Moving Drop: Solutions for Intermediate Reynolds Numbers. J. Fluid Mech. 149, 33–58 (1984)

    Article  MATH  Google Scholar 

  • Susheela, N., Sharp, M.K.: Heat Pipe Augmented Passive Solar System for Heating of Building. Journal of Energy Engineering 127(1), 18–36 (2001)

    Article  Google Scholar 

  • Thewsey, D.J., Zhao, Y.Y.: Thermal Conductivity of Porous Copper Manufactured by the Lost Carbonate Sintering Process. Physica Status Solidi. 205(5), 1126–1131 (2008)

    Article  Google Scholar 

  • Tyagi, S.K., Pandey, A.K., Pant, P.C., Tyagi, V.V.: Formation, Potential and Abatement of Plume From Wet Cooling Towers: a Review. Renew. Sustain. Energy Rev. 16, 3409–3429 (2012)

    Article  Google Scholar 

  • Wayner, P.C., Jr., Kao, Y.K., LaCroix, L.V.: The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film. J. Heat Mass Transfer 19, 487–492 (1976)

    Article  Google Scholar 

  • Zaghdoudi, M.C., Tantolin, C., Sarno, C.: Experimental Investigation on the Use of Flat Mini Heat Pipes for Avionics Electronic Modules Cooling. International Review of Mechanical Engineering 5(4), 770–883 (2011)

    Google Scholar 

  • Zhang, Z., Sun, Z., Duan, C.: A New Type of Passive Solar Energy Utilization Technology - The Wall Implanted with Heat Pipes. Energy and Buildings 84, 111–116 (2014)

    Article  Google Scholar 

  • Zhang, P., Wang, B., Shi, W., Li, X.: Experimental Investigation on Two-Phase Thermosyphon Loop With Partially Liquid-Filled Downcomer. Appl. Energy 160, 10–17 (2015)

    Article  Google Scholar 

  • Zhang, P., Wang, B., Wu, W., Shi, W., Li, X.: Heat Recovery From Internet Data Centers for Space Heating Based on An Integrated Air Conditioner With Thermosyphon. Renew Energy 80, 396–406 (2015)

    Article  Google Scholar 

  • Zhang, P., Zhou, D., Shi, W., Li, X., Wang, B.: Dynamic Performance of Self-Operated Three-Way Valve Used in a Hybrid Air Conditioner. Appl. Therm. Eng. 65, 384–393 (2014)

    Article  Google Scholar 

  • Zhang H., Shi Z., Liu K, Shao S., Jin T., Tian C., Experimental and Numerical Investigation on A CO2 Loop Thermosyphon for Free Cooling of Data Centers, Applied Thermal Engineering 1983–1090 (2017c)

    Google Scholar 

  • Zuber, N.: Nucleate Boiling, The region of Isolated Bubbles and the Similarity with Natural Convection. Int. J. Heat Mass Transfer 6, 53–78 (1963)

    Article  Google Scholar 

  • Ângelo, W., Mantelli, M. B. H. and Milanez, F. H., Design of a Heater For Natural Gas Stations Assisted by Two-Phase Loop Thermosyphon, 14th International Heat Pipe Conference, Florianópolis, Brazil (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Barbosa Henriques Mantelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mantelli, M.B.H. (2021). Other Applications. In: Thermosyphons and Heat Pipes: Theory and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-62773-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62773-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62772-0

  • Online ISBN: 978-3-030-62773-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics