Skip to main content

Abstract

Imaging section: Distinguishing between different types of spinal cord lesions is crucial because the treatments vary greatly: interventional procedures for vascular malformations, decompression surgery for compressive myelopathy, biopsy or resection for neoplasm, and steroids for inflammatory etiologies. However, spinal cord lesions remain a diagnostic challenge due to the wide range of etiologies and nonspecific clinical and imaging presentations. The development of new diffusion-weighted imaging (DWI) techniques with increased resolution and decreased magnetic susceptibility effects, such as BLADE-DWI and multi-shot echo planar DWI, has given radiologists an additional tool to help refine differential diagnoses. Although data is still limited, many investigators believe that DWI in combination with apparent diffusion coefficient (ADC) is more sensitive and specific for cord lesions than T2 weighting since these techniques provide physiologic information. Typically, etiologies that lead to cytotoxic edema (impaired free motion of water molecules), such as cord infarct, will show restricted diffusion (high DWI signal and decreased ADC). Additional etiologies that may show restriction of diffusion include acute demyelination, acute cord contusion, hypercellular tumor, infectious myelitis, and intramedullary abscess. On the other hand, vasogenic/interstitial edema, cystic necrosis, gliosis, fluid collection or increased extracellular matrix (promoting free diffusion of water molecules), such as in subacute to chronic inflammatory or demyelinating lesions, myelomalacia, compressive myelopathy, pre-syrinx/syrinx, hypocellular neoplasm tend to show increased ADC values.

Treatment section: Imaging is paramount in identifying intradural from extradural spinal tumors. Current MRI techniques are quite accurate in separating gliomas from meningiomas, nerve sheath tumors, cavernomas, or hemangioblastomas. Diagnosis of intramedullary tumors can often be suspected from imaging, but confirmation demands surgery. Our review of 30 gliomas referred to our institution revealed that distinguishing astrocytoma from ependymoma was not consistent, and both diagnoses were often listed as possible. A syrinx cavity was, however, more often associated with ependymoma compared to astrocytoma. Surgery remains the mainstay of treating symptomatic intramedullary lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beslow LA et al (2008) Role of diffusion MRI in diagnosis of spinal cord infarction7 in children. Neuropediatrics 39(3):188–191

    Article  CAS  PubMed  Google Scholar 

  2. Facon D et al (2005) MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 26(6):1587–1594

    PubMed  PubMed Central  Google Scholar 

  3. Kuker W et al (2004) Diffusion-weighted MRI of spinal cord infarction—high resolution imaging and time course of diffusion abnormality. J Neurol 251(7):818–824

    Article  PubMed  Google Scholar 

  4. Loher TJ et al (2003) Diffusion-weighted MRI in acute spinal cord ischaemia. Neuroradiology 45(8):557–561

    Article  CAS  PubMed  Google Scholar 

  5. Sagiuchi T et al (2002) Diffusion-weighted MRI of the cervical cord in acute spinal cord injury with type II odontoid fracture. J Comput Assist Tomogr 26(4):654–656

    Article  PubMed  Google Scholar 

  6. Thurnher MM, Bammer R (2006) Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology 48(11):795–801

    Article  PubMed  Google Scholar 

  7. Porter DA, Heidemann RM (2009) High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 62(2):468–475

    Article  PubMed  Google Scholar 

  8. Kumral E et al (2011) Spinal ischaemic stroke: clinical and radiological findings and short-term outcome. Eur J Neurol 18(2):232–239

    Article  CAS  PubMed  Google Scholar 

  9. Manara R et al (2010) Spinal cord infarction due to fibrocartilaginous embolization: the role of diffusion weighted imaging and short-tau inversion recovery sequences. J Child Neurol 25(8):1024–1028

    Article  PubMed  Google Scholar 

  10. Millichap JJ, Sy BT, Leacock RO (2007) Spinal cord infarction with multiple etiologic factors. J Gen Intern Med 22(1):151–154

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hickey R et al (1986) Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain? Stroke 17(6):1183–1189

    Article  CAS  PubMed  Google Scholar 

  12. Marcus ML et al (1977) Regulation of total and regional spinal cord blood flow. Circ Res 41(1):128–134

    Article  CAS  PubMed  Google Scholar 

  13. Sandler AN, Tator CH (1976) Effect of acute spinal cord compression injury on regional spinal cord blood flow in primates. J Neurosurg 45(6):660–676

    Article  CAS  PubMed  Google Scholar 

  14. Weidauer S et al (2002) Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology 44(10):851–857

    Article  PubMed  Google Scholar 

  15. Bammer MMTaR (2006) Diffusion-weighted magnetic resonance imaging of the spine and spinal cord. Semin Roentgenol 41:294–311

    Article  PubMed  Google Scholar 

  16. Loher TJ, Bassetti CL, Lovblad KO et al (2003) Diffusion-weighted MRI in acute spinal cord ischaemia. Neuroradiology 45:557–561

    Article  CAS  PubMed  Google Scholar 

  17. Wilhelm Kuker MW, Klose U et al (2004) Diffusion-weighted MRI of spinal cord infarction. High resolution imaging and time course of diffusion abnormality. J Neurol 251:818–824

    PubMed  Google Scholar 

  18. Criscuolo GR, Oldfield EH, Doppman JL (1989) Reversible acute and subacute myelopathy in patients with dural arteriovenous fistulas. Foix-Alajouanine syndrome reconsidered. J Neurosurg 70(3):354–359

    Article  CAS  PubMed  Google Scholar 

  19. Heros RC (2009) Foix-Alajouanine syndrome: what is it? J Neurosurg 111(5):900–901

    Article  PubMed  Google Scholar 

  20. Inoue T et al (2006) Congestive myelopathy due to cervical perimedullary arteriovenous fistula evaluated by apparent diffusion coefficient values—case report. Neurol Med Chir (Tokyo) 46(11):559–562

    Article  Google Scholar 

  21. Kataoka H et al (2001) Venous congestion is a major cause of neurological deterioration in spinal arteriovenous malformations. Neurosurgery 48(6):1224–1229; discussion 1229–30

    Google Scholar 

  22. Spetzler RF et al (2002) Modified classification of spinal cord vascular lesions. J Neurosurg 96(2 Suppl):145–156

    PubMed  Google Scholar 

  23. Sibon I et al (2006) Diffusion MRI in spinal dural arterio-venous fistula: a case report. Spinal Cord 44(5):315–317

    Article  CAS  PubMed  Google Scholar 

  24. Borchers AT, Gershwin ME (2012) Transverse myelitis. Autoimmun Rev 11(3):231–248

    Article  CAS  PubMed  Google Scholar 

  25. Frohman EM, Wingerchuk DM (2010) Clinical practice. Transverse myelitis. N Engl J Med 363(6):564–572

    Article  CAS  PubMed  Google Scholar 

  26. Seifert T et al (2005) Relapsing acute transverse myelitis: a specific entity. Eur J Neurol 12(9):681–684

    Article  CAS  PubMed  Google Scholar 

  27. Alper G et al (2011) Idiopathic acute transverse myelitis in children: an analysis and discussion of MRI findings. Mult Scler 17(1):74–80

    Article  PubMed  Google Scholar 

  28. Choi KH et al (1996) Idiopathic transverse myelitis: MR characteristics. AJNR Am J Neuroradiol 17(6):1151–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Goh C, Phal PM, Desmond PM (2011) Neuroimaging in acute transverse myelitis. Neuroimaging Clin N Am 21(4):951–973

    Article  PubMed  Google Scholar 

  30. Renoux J et al (2006) MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol 27(9):1947–1951

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dale RC et al (2000) Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain 123(12):2407–2422

    Article  PubMed  Google Scholar 

  32. Hynson JL et al (2001) Clinical and neuroradiologic features of acute disseminated encephalomyelitis in children. Neurology 56(10):1308–1312

    Article  CAS  PubMed  Google Scholar 

  33. Tenembaum S, Chamoles N, Fejerman N (2002) Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology 59(8):1224–1231

    Article  PubMed  Google Scholar 

  34. Marcel C et al (2010) Diffusion-weighted imaging in noncompressive myelopathies: a 33-patient prospective study. J Neurol 257(9):1438–1445

    Article  PubMed  Google Scholar 

  35. Balasubramanya KS et al (2007) Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis. Neuroradiology 49(2):177–183

    Article  CAS  PubMed  Google Scholar 

  36. Zuccoli G et al (2014) Vasogenic edema characterizes pediatric acute disseminated encephalomyelitis. Neuroradiology 56:679–684

    Article  PubMed  Google Scholar 

  37. Andre JB, Bammer R (2010) Advanced diffusion-weighted magnetic resonance imaging techniques of the human spinal cord. Top Magn Reson Imaging 21(6):367–378

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lycklama G et al (2003) Spinal-cord MRI in multiple sclerosis. Lancet Neurol 2(9):555–562

    Article  PubMed  Google Scholar 

  39. Clark CA, Werring DJ, Miller DH (2000) Diffusion imaging of the spinal cord in vivo: estimation of the principal diffusivities and application to multiple sclerosis. Magn Reson Med 43(1):133–138

    Article  CAS  PubMed  Google Scholar 

  40. McKeon A et al (2008) CNS aquaporin-4 autoimmunity in children. Neurology 71(2):93–100

    Article  CAS  PubMed  Google Scholar 

  41. Wingerchuk DM et al (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6(9):805–815

    Article  CAS  PubMed  Google Scholar 

  42. Kitley J et al (2014) Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol 71(3):276–283

    Article  PubMed  Google Scholar 

  43. Wingerchuk DM et al (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66(10):1485–1489

    Article  CAS  PubMed  Google Scholar 

  44. Benedetti B et al (2006) Grading cervical cord damage in neuromyelitis optica and MS by diffusion tensor MRI. Neurology 67(1):161–163

    Article  CAS  PubMed  Google Scholar 

  45. Sohn M et al (2013) Spinal cord neurosarcoidosis. Am J Med Sci 347:195–198

    Article  Google Scholar 

  46. Lee WJ, Hsu HY, Wang PY (2008) Reversible myelopathy on magnetic resonance imaging due to cobalamin deficiency. J Chin Med Assoc 71(7):368–372

    Article  PubMed  Google Scholar 

  47. Hirata A et al (2006) Subacute combined degeneration of the spinal cord concomitant with gastric cancer. Intern Med 45(14):875–877

    Article  PubMed  Google Scholar 

  48. Okada S et al (2006) Two cases of subacute combined degeneration: magnetic resonance findings. J Nippon Med Sch 73(6):328–331

    Article  PubMed  Google Scholar 

  49. Ravina B, Loevner LA, Bank W (2000) MR findings in subacute combined degeneration of the spinal cord: a case of reversible cervical myelopathy. AJR Am J Roentgenol 174(3):863–865

    Article  CAS  PubMed  Google Scholar 

  50. Tian C (2011) Hyperintense signal on spinal cord diffusion-weighted imaging in a patient with subacute combined degeneration. Neurol India 59(3):429–431

    Article  PubMed  Google Scholar 

  51. Kim EY et al (2013) Subacute combined degeneration revealed by diffusion-weighted imaging: a case study. Clin Neuroradiol 23(2):157–159

    Article  CAS  PubMed  Google Scholar 

  52. Jang S et al (2012) Enterovirus 71-related encephalomyelitis: usual and unusual magnetic resonance imaging findings. Neuroradiology 54(3):239–245

    Article  PubMed  Google Scholar 

  53. Li H et al (2019) MRI reveals segmental distribution of enterovirus lesions in the central nervous system: a probable clinical evidence of retrograde axonal transport of EV-A71. J Neuro-Oncol 25(3):354–362

    CAS  Google Scholar 

  54. Iwasaki M et al (2011) Acute onset intramedullary spinal cord abscess with spinal artery occlusion: a case report and review. Eur Spine J 20(Suppl 2):S294–S301

    Article  PubMed  Google Scholar 

  55. Murphy KJ et al (1998) Spinal cord infection: myelitis and abscess formation. AJNR Am J Neuroradiol 19(2):341–348

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dorflinger-Hejlek E et al (2010) Diffusion-weighted MR imaging of intramedullary spinal cord abscess. AJNR Am J Neuroradiol 31(9):1651–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thurnher MM, Bammer R (2006) Diffusion-weighted magnetic resonance imaging of the spine and spinal cord. Semin Roentgenol 41(4):294–311

    Article  PubMed  Google Scholar 

  58. Hori M et al (2012) New diffusion metrics for spondylotic myelopathy at an early clinical stage. Eur Radiol 22(8):1797–1802

    Article  PubMed  PubMed Central  Google Scholar 

  59. Demir A et al (2003) Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 229(1):37–43

    Article  PubMed  Google Scholar 

  60. Banaszek A et al (2014) Usefulness of diffusion tensor MR imaging in the assessment of intramedullary changes of the cervical spinal cord in different stages of degenerative spine disease. Eur Spine J 23(7):1523–1530

    Article  PubMed  Google Scholar 

  61. Zhang JS, Huan Y (2014) Multishot diffusion-weighted MR imaging features in acute trauma of spinal cord. Eur Radiol 24(3):685–692

    Article  PubMed  Google Scholar 

  62. Yurube T et al (2009) The vanishment of an intramedullary high-signal intensity lesion at the craniocervical junction after surgical treatment: a case report of the presyrinx state. Spine (Phila Pa 1976) 34(6):E235–E239

    Article  Google Scholar 

  63. Eser O et al (2007) Idiopathic recurrent transverse myelitis with syringomyelia: a case report. Turk Neurosurg 17(3):228–231

    PubMed  Google Scholar 

  64. Fischbein NJ et al (1999) The “presyrinx” state: a reversible myelopathic condition that may precede syringomyelia. AJNR Am J Neuroradiol 20(1):7–20

    CAS  PubMed  Google Scholar 

  65. Fischbein NJ et al (2000) The “presyrinx” state: is there a reversible myelopathic condition that may precede syringomyelia? Neurosurg Focus 8(3):E4

    Article  CAS  PubMed  Google Scholar 

  66. Yamasaki F et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235(3):985–991

    Article  PubMed  Google Scholar 

  67. de Fatima Vasco Aragao M et al (2014) Comparison of perfusion, diffusion, and MR spectroscopy between low-grade enhancing pilocytic astrocytomas and high-grade astrocytomas. AJNR Am J Neuroradiol 35:1495–1502

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rumboldt Z et al (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 27(6):1362–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zulfiqar M, Yousem DM, Lai H (2013) ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor?—a meta-analysis. AJR Am J Roentgenol 200(3):624–629

    Article  PubMed  Google Scholar 

  70. Minehan KJ, Brown PD, Scheithauer BW, Krauss WE, Wright MP (2009) Prognosis and treatment of spinal cord astrocytoma. Int J Radiat Oncol Biol Phys 73(3):727–733

    Article  PubMed  Google Scholar 

  71. Brandao LA, Shiroishi MS, Law M (2013) Brain tumors: a multimodality approach with diffusion-weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy, dynamic susceptibility contrast and dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging Clin N Am 21(2):199–239

    Article  PubMed  Google Scholar 

  72. Gimi B et al (2012) Utility of apparent diffusion coefficient ratios in distinguishing common pediatric cerebellar tumors. Acad Radiol 19(7):794–800

    Article  PubMed  Google Scholar 

  73. Porto L et al (2013) Differentiation between high and low grade tumours in paediatric patients by using apparent diffusion coefficients. Eur J Paediatr Neurol 17(3):302–307

    Article  PubMed  Google Scholar 

  74. Rykken JB et al (2013) Intramedullary spinal cord metastases: MRI and relevant clinical features from a 13-year institutional case series. AJNR Am J Neuroradiol 34(10):2043–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mechtler LL, Nandigam K (2013) Spinal cord tumors: new views and future directions. Neurol Clin 31(1):241–268

    Article  PubMed  Google Scholar 

  76. Flanagan EP et al (2011) Primary intramedullary spinal cord lymphoma. Neurology 77(8):784–791

    Article  CAS  PubMed  Google Scholar 

  77. Fitsiori A et al (2019) Imaging spectrum of Bing-Neel syndrome: how can a radiologist recognise this rare neurological complication of Waldenstrom’s macroglobulinemia? Eur Radiol 29(1):102–114

    Article  PubMed  Google Scholar 

  78. Varettoni M et al (2017) Bing-Neel Syndrome: illustrative cases and comprehensive review of the literature. Mediterr J Hematol Infect Dis 9(1):e2017061

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bostrom A, Kanther NC, Grote A, Bostrom J (2014) Management and outcome in adult intramedullary spinal cord tumours: a 20-year single institution experience. BMC Res Notes 7:908

    Article  PubMed  PubMed Central  Google Scholar 

  80. Manzano G, Green BA, Vanni S, Levi AD (2008) Contemporary management of adult intramedullary spinal tumors-pathology and neurological outcomes related to surgical resection. Spinal Cord 46(8):540–546

    Article  CAS  PubMed  Google Scholar 

  81. Chamberlain MC, Tredway TL (2011) Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep 11(3):320–328

    Article  PubMed  Google Scholar 

  82. Slooff JL (1964) Primary intramedullary tumors of the spinal cord and filum terminale. Saunders, Philadelphia, p 255

    Google Scholar 

  83. Woodroffe RW, Zanaty M, Kirby P, Dlouhy BJ, Menezes AH (2018) Resection of a pediatric intramedullary spinal cord tumor: 2-dimensional operative video. Oper Neurosurg (Hagerstown) 83. https://doi.org/10.1093/ons/opy185

  84. Joaquim AF, Riew KD (2015) Management of cervical spine deformity after intradural tumor resection. Neurosurg Focus 39(2):E13

    Article  PubMed  Google Scholar 

  85. McGirt MJ, Goldstein IM, Chaichana KL, Tobias ME, Kothbauer KF, Jallo GI (2008) Extent of surgical resection of malignant astrocytomas of the spinal cord: outcome analysis of 35 patients. Neurosurgery 63(1):55–60; discussion -1

    Google Scholar 

  86. Abul-Kasim K, Thurnher MM, McKeever P, Sundgren PC (2008) Intradural spinal tumors: current classification and MRI features. Neuroradiology 50(4):301–314

    Article  PubMed  Google Scholar 

  87. Raco A, Esposito V, Lenzi J, Piccirilli M, Delfini R, Cantore G (2005) Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery 56(5):972–981; discussion -81

    Google Scholar 

  88. Karikari IO, Nimjee SM, Hodges TR, Cutrell E, Hughes BD, Powers CJ, et al (2011) Impact of tumor histology on resectability and neurological outcome in primary intramedullary spinal cord tumors: a single-center experience with 102 patients. Neurosurgery 68(1):188–197; discussion 97

    Google Scholar 

  89. Ahmed R, Menezes AH, Awe OO, Mahaney KB, Torner JC, Weinstein SL (2014) Long-term incidence and risk factors for development of spinal deformity following resection of pediatric intramedullary spinal cord tumors. J Neurosurg Pediatr 13(6):613–621

    Article  PubMed  Google Scholar 

  90. Scibilia A, Terranova C, Rizzo V, Raffa G, Morelli A, Esposito F et al (2016) Intraoperative neurophysiological mapping and monitoring in spinal tumor surgery: sirens or indispensable tools? Neurosurg Focus 41(2):E18

    Article  PubMed  Google Scholar 

  91. Adams H, Avendano J, Raza SM, Gokaslan ZL, Jallo GI, Quinones-Hinojosa A (2012) Prognostic factors and survival in primary malignant astrocytomas of the spinal cord: a population-based analysis from 1973 to 2007. Spine (Phila Pa 1976) 37(12):E727–E735

    Article  Google Scholar 

  92. Winn HR (2017) Youmans and Winn neurological surgery. Seventh edition. ed. Elsevier, Philadelphia, PA

    Google Scholar 

  93. Ottenhausen M, Ntoulias G, Bodhinayake I, Ruppert FH, Schreiber S, Forschler A et al (2018) Intradural spinal tumors in adults-update on management and outcome. Neurosurg Rev 42:371–388

    Article  PubMed  Google Scholar 

  94. Harrop JS, Ganju A, Groff M, Bilsky M (2009) Primary intramedullary tumors of the spinal cord. Spine (Phila Pa 1976) 34(22 Suppl):S69–S77

    Article  Google Scholar 

  95. Tobin MK, Geraghty JR, Engelhard HH, Linninger AA, Mehta AI (2015) Intramedullary spinal cord tumors: a review of current and future treatment strategies. Neurosurg Focus 39(2):E14

    Article  PubMed  Google Scholar 

  96. Kim DH, Kim JH, Choi SH, Sohn CH, Yun TJ, Kim CH et al (2014) Differentiation between intramedullary spinal ependymoma and astrocytoma: comparative MRI analysis. Clin Radiol 69(1):29–35

    Article  CAS  PubMed  Google Scholar 

  97. Ahmed R, Menezes AH, Awe OO, Torner JC (2014) Long-term disease and neurological outcomes in patients with pediatric intramedullary spinal cord tumors. J Neurosurg Pediatr 13(6):600–612

    Article  PubMed  Google Scholar 

  98. Garces-Ambrossi GL, McGirt MJ, Mehta VA, Sciubba DM, Witham TF, Bydon A et al (2009) Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases. J Neurosurg Spine 11(5):591–599

    Article  PubMed  Google Scholar 

  99. Klekamp J (2013) Treatment of intramedullary tumors: analysis of surgical morbidity and long-term results. J Neurosurg Spine 19(1):12–26

    Article  PubMed  Google Scholar 

  100. Hongo HT, Takai K, Komori T, Taniguchi M (2018) Intramedullary spinal cord ependymoma and astrocytoma: intraoperative frozen-section diagnosis, extent of resection, and outcomes. J Neurosurg Spine 30:1–7

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the invaluable assistance of Faith Vaughn in the editing and submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J. et al. (2021). Spinal Cord Lesions. In: Moritani, T., Capizzano, A.A. (eds) Diffusion-Weighted MR Imaging of the Brain, Head and Neck, and Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-62120-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62120-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62119-3

  • Online ISBN: 978-3-030-62120-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics