Skip to main content

Early Fully-Convolutional Approach to Wavefront Imaging on Solar Adaptive Optics Simulations

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

Aberrations are presented in the wave-front images from celestial objects taken with large ground-based telescopes, due to the effects of the atmospheric turbulence. Therefore, different techniques, known as adaptive optics techniques, have been developed to correct those effects and obtain new images clearer in real time. One part of an adaptive optics system is the Reconstructor System, it receives information of the wavefront given by the wavefront sensor and calculates the correction that will be performed by the Deformable Mirrors. Typically, only a small part of the information received by the wave-front sensors is used by the Reconstructor System. In this work, a new Reconstructor System based on the use of Fully-Convolutional Neural Networks is proposed. Due to the features of Convolutional Neural Networks, all the information received by the wavefront sensor is then used to calculate the correction, allowing for obtaining more quality reconstructions than traditional methods. This is proved in the results of the research, where the most common reconstruction algorithm (the Least-Squares method) and our new method are compared for the same atmospheric turbulence conditions. The new algorithm is used for Solar Single Conjugated Adaptive Optics (Solar SCAO) with the aim of simplifying the system since all the needed calculations are performed with the network. The found improvements can be stated around at 0.4 rad of mean WFE over the recovered wavefront.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roddier, F.: Adaptive Optics in Astronomy; Cambridge university press (1999)

    Google Scholar 

  2. Rimmele, T.R.: Solar adaptive optics. Adapt. Opt. Syst. Technol. 4007, 218–232 (2000)

    Article  Google Scholar 

  3. Osborn, J., et al.: Open-loop tomography with artificial neural networks on CANARY: on-sky results. Mon. Not. R. Astron. Soc. 441, 2508–2514 (2014). https://doi.org/10.1093/mnras/stu758

    Article  Google Scholar 

  4. Suárez Gómez, S.L., et al.: Improving adaptive optics reconstructions with a deep learning approach. In: de Cos Juez, F.J., et al. (eds.) Hybrid Artificial Intelligent Systems, pp. 74–83. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-92639-1_7

    Chapter  Google Scholar 

  5. García Riesgo, F., Suárez Gómez, S.L., Sánchez Lasheras, F., González Gutiérrez, C., Peñalver San Cristóbal, C., de Cos Juez, F.J.: Convolutional CARMEN: tomographic reconstruction for night observation. In: Pérez García, H., Sánchez González, L., Castejón Limas, Ml, Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 335–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_29

    Chapter  Google Scholar 

  6. Zilberman, A., Golbraikh, E., Kopeika, N.S.: Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model. Appl. Opt. 47, 6385 (2008). https://doi.org/10.1364/AO.47.006385

    Article  Google Scholar 

  7. Neal, D.R., Copland, J., Neal, D.A.: Shack-Hartmann wavefront sensor precision and accuracy. Adv. Charact. Tech. Opt. Semicond. Data Storage Compon.ents 4779, 148–161 (2002)

    Article  Google Scholar 

  8. Ellerbroek, B.L.: First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes. JOSA A 11, 783–805 (1994)

    Article  Google Scholar 

  9. Vidal, F., Gendron, E., Rousset, G.: Tomography approach for multi-object adaptive optics. JOSA A 27, A253–A264 (2010)

    Article  Google Scholar 

  10. Sivo, G., et al.: First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder. Opt. Express 22, 23565–23591 (2014)

    Article  Google Scholar 

  11. Matei, O., Pop, P.C., Vălean, H.: Optical character recognition in real environments using neural networks and k-nearest neighbor. Appl. Intell. 39(4), 739–748 (2013). https://doi.org/10.1007/s10489-013-0456-2

    Article  Google Scholar 

  12. Osborn, J., et al.: First on-sky results of a neural network based tomographic reconstructor: carmen on Canary. In: Adaptive Optics Systems IV; Marchetti, E., Close, L.M., Véran, J.-P., Eds.; International Society for Optics and Photonics. 9148, p. 91484 M (2014)

    Google Scholar 

  13. Suárez Gómez, S.L., et al.: Compensating atmospheric turbulence with convolutional neural networks for defocused pupil image wave-front sensors. In: de Cos Juez F. et al. (eds) Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science, vol 10870. Springer, Cham (2018) https://doi.org/10.1007/978-3-319-92639-1_34

  14. Dainty, J.C., Koryabin, A.V., Kudryashov, A.: V Low-order adaptive deformable mirror. Appl. Opt. 37, 4663–4668 (1998)

    Article  Google Scholar 

  15. Basden, A., et al.: DASP the Durham adaptive optics simulation platform: modelling and simulation of adaptive optics systems. SoftwareX (2018)

    Google Scholar 

  16. Zilberman, A., Golbraikh, E., Kopeika, N.S.: Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model. Appl. Opt. 47, 6385–6391 (2008)

    Article  Google Scholar 

  17. Habibi Aghdam, H., Jahani Heravi, E.: Guide to Convolutional Neural Networks. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57550-6

    Book  Google Scholar 

  18. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  MATH  Google Scholar 

  19. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  20. Gómez, S.L.S., Gutiérrez, C.G., Rodríguez, J.D.S., Rodríguez, M.L.S., Lasheras, F.S., de Cos Juez, F.J.: Analysing the performance of a tomographic reconstructor with different neural networks frameworks. In: Madureira, A.M., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016. AISC, vol. 557, pp. 1051–1060. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_103

    Chapter  Google Scholar 

  21. Suárez Gómez, S.L.: Técnicas estadísticas multivariantes de series temporales para la validación de un sistema reconstructor basado en redes neuronales (2016)

    Google Scholar 

  22. Mirowski, P.W., LeCun, Y., Madhavan, D., Kuzniecky, R.: Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG. In: 2008 IEEE Workshop on Machine Learning for Signal Processing, pp. 244–249 (2008)

    Google Scholar 

  23. Nagi, J., et al.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 342–347 (2011)

    Google Scholar 

  24. Nguen, N.T., Sako, S., Kwolek, B.: Deep CNN-based recognition of JSL finger spelling. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 602–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_51

    Chapter  Google Scholar 

  25. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440. IEEE (2015)

    Google Scholar 

  26. Berkefeld, T., Schmidt, D., Soltau, D., von der Lühe, O., Heidecke, F.: The GREGOR adaptive optics system. Astron. Nachrichten 333, 863–871 (2012). https://doi.org/10.1002/asna.201211739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Daniel Santos Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riesgo, F.G. et al. (2020). Early Fully-Convolutional Approach to Wavefront Imaging on Solar Adaptive Optics Simulations. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics