Skip to main content

Extending LOUPE for K-Space Under-Sampling Pattern Optimization in Multi-coil MRI

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2020)

Abstract

The previously established LOUPE (Learning-based Optimization of the Under-sampling Pattern) framework for optimizing the k-space sampling pattern in MRI was extended in three folds: firstly, fully sampled multi-coil k-space data from the scanner, rather than simulated k-space data from magnitude MR images in LOUPE, was retrospectively under-sampled to optimize the under-sampling pattern of in-vivo k-space data; secondly, binary stochastic k-space sampling, rather than approximate stochastic k-space sampling of LOUPE during training, was applied together with a straight-through (ST) estimator to estimate the gradient of the threshold operation in a neural network; thirdly, modified unrolled optimization network, rather than modified U-Net in LOUPE, was used as the reconstruction network in order to reconstruct multi-coil data properly and reduce the dependency on training data. Experimental results show that when dealing with the in-vivo k-space data, unrolled optimization network with binary under-sampling block and ST estimator had better reconstruction performance compared to the ones with either U-Net reconstruction network or approximate sampling pattern optimization network, and once trained, the learned optimal sampling pattern worked better than the hand-crafted variable density sampling pattern when deployed with other conventional reconstruction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: Modl: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)

    Article  Google Scholar 

  2. Bahadir, C.D., Dalca, A.V., Sabuncu, M.R.: Learning-based optimization of the under-sampling pattern in MRI. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 780–792. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_61

    Chapter  Google Scholar 

  3. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011). https://doi.org/10.1007/s10851-010-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007). https://doi.org/10.1007/s10479-007-0176-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Dennis Jr., J.E., Moré, J.J.: Quasi-newton methods, motivation and theory. SIAM Rev. 19(1), 46–89 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donoho, D.L., et al.: Nonlinear solution of linear inverse problems by Wavelet-Vaguelette decomposition. Appl. Comput. Harmonic Anal. 2(2), 101–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, L., et al.: Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn. Reson. Med. 72(3), 707–717 (2014)

    Article  Google Scholar 

  10. Gözcü, B., et al.: Learning-based compressive MRI. IEEE Trans. Med. Imaging 37(6), 1394–1406 (2018)

    Article  Google Scholar 

  11. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  12. Haldar, J.P., Kim, D.: OEDIPUS: an experiment design framework for sparsity-constrained MRI. IEEE Trans. Med. Imaging 38(7), 1545–1558 (2019)

    Article  Google Scholar 

  13. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning. Coursera Video Lect. 264(1) (2012)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Article  Google Scholar 

  18. Knoll, F., Clason, C., Diwoky, C., Stollberger, R.: Adapted random sampling patterns for accelerated MRI. Magn. Reson. Mater. Phys. Biol. Med. 24(1), 43–50 (2011)

    Article  Google Scholar 

  19. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  20. Murphy, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(l_1\)-spirit compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)

    Article  Google Scholar 

  21. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2017)

    Article  Google Scholar 

  25. Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  26. Uecker, M., et al.: Berkeley advanced reconstruction toolbox. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 23 (2015)

    Google Scholar 

  27. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  28. Vasanawala, S., et al.: Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body mri of pediatric patients. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1039–1043. IEEE (2011)

    Google Scholar 

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Zhang, J., et al.: Fidelity imposed network edit (fine) for solving ill-posed image reconstruction. NeuroImage 211, 116579 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J. et al. (2020). Extending LOUPE for K-Space Under-Sampling Pattern Optimization in Multi-coil MRI. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2020. Lecture Notes in Computer Science(), vol 12450. Springer, Cham. https://doi.org/10.1007/978-3-030-61598-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61598-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61597-0

  • Online ISBN: 978-3-030-61598-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics