Skip to main content

Arbuscular Mycorrhizal Fungi: The Natural Biotechnological Tools for Sustainable Crop Production Under Saline Soils in the Modern Era of Climate Change

  • Chapter
  • First Online:
Plant Growth Regulators

Abstract

Degradation of land and deterioration of the environment are two major problems in agriculture. Scientists recently warned that 24 billion tons of fertile soils are being lost in every year, largely due to unsustainable agriculture practices. It is estimated that about 25% of the total global land area has been degraded resulting in substantial economic impacts on agricultural livelihoods and national economies, especially in the lower-income countries. If this trend continues, 95% of the Earth’s land area will be degraded by 2050. Soil salinity is considered as the most important abiotic stress, which is responsible for land degradation particularly in arid and semi-arid regions, leading to cause a major challenge to sustainable agriculture. To deal with saline soils and minimize crop loss, new salt-tolerant crop plants developed through classical breeding and genetic engineering have been considered. Besides, several lines of evidence indicate that arbuscular mycorrhizal fungi (AMF) promote plant growth and enhance salinity tolerance by employing various mechanisms including enhanced nutrient acquisition by AMF-colonized plant roots. This chapter covers the occurrence of AMF in saline soils and effect of salinity on the AMF colonization, hyphal length and sporulation both in vivo and in vitro. It also covers literature relating to the alleviation of salt stress by AMF and its beneficial effects on growth and modulation of biochemical, physiological and molecular mechanisms in the host plants to tolerate salt stress. The chapter also overviewed areas where more investigations are required to gain a thorough understanding of the different mechanisms AMF symbiosis to protects plants from salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AMF:

Arbuscular mycorrhizal fungi

APX:

Ascorbate peroxidase

AsA:

Ascorbate

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

FAO:

Food and Agricultural Organization

GEF:

Global Environment Facility

GIPs:

GlpF-like intrinsic proteins

GR:

Glutathione reductase

GSH:

Glutathione

HIPs:

Hybrid intrinsic proteins

JA:

Jasmonic acid

NIPs:

NOD26-like intrinsic proteins

PIPs:

Plasma membrane intrinsic protein

PHs:

Phytohormones

Put:

Putrescine

ROS:

Reactive oxygen species

SIPs:

Small basic intrinsic proteins

SLs:

Strigolactones

SOD:

Superoxide dismutase

Spd:

Spermidine

Spm:

Spermine

TIPs:

Tonoplast intrinsic proteins

UN:

United Nations

XIPs:

X-intrinsic proteins

References

  • Abd-Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 22(3):274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Latef AA, Chaoxing H (2014) Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33(3):644–653

    Article  CAS  Google Scholar 

  • Acharya AK, Kafle N (2009) Land degradation issues in Nepal and its management through agroforestry. J Agric Environ 10:133–143

    Article  Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients,” in Physiological mechanisms and adaptation strategies in plants under changing environment, vol. 1 . Eds. Ahmad P, Wani MR (New York, NY: Springer), 25–55. https://doi.org/10.1007/978-1-4614-8591-9_2

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175. https://doi.org/10.3109/07388550903524243

  • Adiku G, Renger M, Wessolek G, Facklam M, Hech-Bischoltz C (2001) Simulation of dry matter production and seed yield of common beans under varying soil water and salinity conditions. Agric Water Manag 47:55–68

    Article  Google Scholar 

  • Ahmad I, Mohmood I, Coelho JP, Pacheco M, Santos MA, Duarte AC, Pereira E (2012) Role of non-enzymatic antioxidants on the bivalves’ adaptation to environmental mercury: organ-specificities and age effect in Scrobicularia plana inhabiting a contaminated lagoon. Environ Pollut 163:218–225

    Article  CAS  PubMed  Google Scholar 

  • Ahmed IM, Nadira UA, Bibi N, Cao F, He X, Zhang G, Wu F (2015) Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ Exp Bot 111:1–2

    Article  CAS  Google Scholar 

  • Al-Garni SMS (2006) Increasing Na+Cl – salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. Am Eurasian J Agric Environ Sci 1:119–126

    Google Scholar 

  • Alguacil MM, Hernandez JA, Caravaca F, Portillo B, Roldan A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118:562–570

    Article  CAS  Google Scholar 

  • Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7

    Article  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effect of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    Article  CAS  Google Scholar 

  • Al-Khaliel AS (2010) Effects of arbuscular Mycorrhization in sterile and non-sterile soils. Trop Life Sci Res 21(1):55–70

    PubMed  PubMed Central  Google Scholar 

  • Andrea B, Tani C (2009) Ultrastructural effects of salinity in Nicotiana bigelovii var. bigelovii callus cells and Allium cepa roots. Caryologia 62(2):124–133

    Article  Google Scholar 

  • Apel K, Hirt H, (2004) REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annu Rev Plant Biol 55 (1):373–399

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:207–216

    Article  CAS  Google Scholar 

  • Bagyaraj DJ (2011) Microbial biotechnology for sustainable agriculture, horticulture & forestry. Nipa 2011:322

    Google Scholar 

  • Bagyaraj DJ (2014) Ecology of arbuscular mycorrhizal fungi. In: Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 133–146

    Chapter  Google Scholar 

  • Balliu A, Sallaku G, Rewald B (2015) AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7(12):15967–15981

    Article  CAS  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13(1):123–141

    Google Scholar 

  • Bensel T (2008) Fuelwood, deforestation, and land degradation: 10 years of evidence from Cebu province, the Philippines. Land Degrad Dev 19(6):587–605

    Article  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309

    Article  CAS  PubMed  Google Scholar 

  • Borde M, Dudhane M, Kulkarni M (2017) Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. In: Mycorrhiza-eco-physiology, secondary metabolites, nanomaterials. Springer, Cham, pp 71–86

    Chapter  Google Scholar 

  • Borlaug N (2007) Feeding a hungry world. Science 318(5849):318–359

    Article  Google Scholar 

  • Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566:1223–1234. https://doi.org/10.1016/j.scitotenv.2016.05.178

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    Article  CAS  Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28(2):187–192

    Article  CAS  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Carvalho LM, Correia PH, Martins-Loucao A (2001) Arbuscular mycorrhizal fungal propagules in a salt marsh. Mycorrhiza 14:165–170

    Article  Google Scholar 

  • Çekiç FÖ, Ünyayar S, Ortaş İ (2012) Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turk J Bot 36(1):63–72

    Google Scholar 

  • Cheong JJ, Do Choi Y (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19(7):409–413

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  • Cramer GR (2002) Response of abscisic acid mutants of Arabidopsis to salinity. Funct Plant Biol 29(5):561–567

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum inoculated wheat seedlings under osmotic stress. Can J Bot 76:238–244

    Google Scholar 

  • Cuartero J, Fernandez-Munoz (1999) Effects of salinity on tomato. Sci Hortic 78:83–125. Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology;72:1115–1119

    Article  CAS  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166(6):617–625

    Article  CAS  PubMed  Google Scholar 

  • del Val C, Barea JM, Azcón-Aguilar C (1999) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol 11(2–3):261–269

    Article  Google Scholar 

  • Desai S, Kumar GP, Amalraj LD, Bagyaraj DJ, Ashwin R (2016) Exploiting PGPR and AMF biodiversity for plant health management. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 145–160

    Chapter  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Duke ER, Johnson CR, Koch KE (1986) Accumulation of phosphorus, dry matter and betaine during Na+Cl- stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytol 104:583–590

    Article  CAS  PubMed  Google Scholar 

  • Ebrahim E (2014) Role of arbuscular mycorrhizal fungi in fighting soil salinity. Doctoral dissertation, Royal Holloway, University of London. https://pure.royalholloway.ac.uk/portal/files/22555386/final_ebrahim_all_thesis_post_viva.pdf

  • El-Desouky SA, Atawia AAR (1998) Growth performance of citrus rootstocks under saline conditions. Alex J Agric Res 43:231–254

    Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22(3):203–217

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23 (1):71–86

    Google Scholar 

  • FAO (2008) Land and plant nutrition management service. http://www.fao.org/ag/AGL/public.stm/

  • FAO (Food and Agricultural Organization) (2016) FAO soils portal: salt affected soils. Rome, Italy. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed on 21 June 2020

  • Feng G, Zhang FS, Li Xl, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Figueroa ME, Frenandez-Baco L, Luque T, Davy AJ (1997) Chlorophyll fluorescence, stress and survival in populations of Mediterranean grassland species. J Veg Sci 8:881–888

    Article  Google Scholar 

  • Founoune H, Duponnois R, Bâ AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2009) Mycorrhiza Helper Bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytologist 153(1):81–89

    Google Scholar 

  • Frechill S, Lasa B, Ibarretxe L, Lamsfus C, Aparicio Trejo P (2001) Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regul 35:171–179

    Article  Google Scholar 

  • García-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H (2009) Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza 19(7):449–459

    Article  PubMed  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul 27:115–124

    Article  CAS  Google Scholar 

  • GEF (2020) Global environment facility. https://www.thegef.org/topics/land-degradation. Accessed on June 2020

  • Gharineh MH, Nadian H, Fathi G, Siadat A, Maadi B (2009) Role of arbuscular mycorrhizae in development of salt-tolerance of Trifolium alexandrinum plants under salinity stress. J Food Agric Environ 7(3/4):432–437

    Google Scholar 

  • Ghorbanli M, Ebrahimzadeh H, Sharifi M (2004) Effects of Na+Cl- and mycorrhizal fungi on antioxidative enzymes in soybean. Biol Plant 48:575–581

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, O’Leary JW (1985) Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran desert. J Arid Environ 9:81–91

    Article  Google Scholar 

  • Gomiero T (2016) Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability 8(3):281. https://doi.org/10.3390/su8030281

    Article  Google Scholar 

  • Gorham J (1995) Betaines in higher plants – biosynthesis and role in stress metabolism. In: Wallgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 171–203

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Guillon F, Larre C, Petipas F, Berger A, Moussawi J, Rogniaux H, Santoni A, Saulnier L, Jamme F, Miquel M, Lepiniec L (2012) A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. J Exp Bot 63(2):739–755

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Paszkowski U (2009) Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant-Microbe Interact 22(7):763–772

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 31(1–2):313–327

    Article  CAS  Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer Science+Business Media, New York, pp 139–159. https://doi.org/10.1007/978-1-4614-9466-9_7

    Chapter  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242

    Article  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23(2):272–281

    Article  CAS  PubMed  Google Scholar 

  • He T, Cramer GR (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil 179(1):25–33

    Article  CAS  Google Scholar 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B: Biointerfaces 59(2):128–133

    Article  CAS  PubMed  Google Scholar 

  • Hejiden JN, Klironomos M, Ursic P et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Hilderbrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in central European salt marshes. Mycorrhiza 10:175–183

    Article  Google Scholar 

  • Huang Z, He CX, He ZQ, Zou ZR, Zhang ZB (2010) The effects of arbuscular mycorrhizal fungi on reactive oxyradical scavenging system of tomato under salt tolerance. Agric Sci China 9(8):1150–1159

    Article  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jarstfer AG, Farmer-Koppenol P, Sylvia DM (1998) Tissue magnesium and calcium affect mycorrhiza development and fungal reproduction. Mycorrhiza 7:237–242

    Article  CAS  PubMed  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SA, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5(6):726–734

    CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize-leaves. J Exp Bot 53:2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Singh R (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under Na+Cl- salinity. Plant Physiol Biochem 3:475–481

    Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Kaldorf M, Schemelzer E, Bothe H (1998) Expression of maize and fungal nitrate reductase in arbuscular mycorrhiza. Mol Plant-Microbe Interact 11:439–448

    Article  CAS  PubMed  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191(4):273–282

    Article  CAS  Google Scholar 

  • Karamesouti M, Detsis V, Kounalaki A, Vasiliou P, Salvati L, Kosmas C (2015) Land-use and land degradation processes affecting soil resources: evidence from a traditional Mediterranean cropland (Greece). Catena 132:45–55

    Article  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    Article  CAS  Google Scholar 

  • Khatkar D, Kuhad MS (2000) Short-term salinity induced changes in two wheat cultivars at different growth stages. Biol Plant 43(4):629–632

    Article  CAS  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2–3):245–252

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A (2015) The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci Total Environ 514:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123(1):177–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895

    Article  Google Scholar 

  • Landgraf R, Schaarschmidt S, Hause B (2012) Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant Cell Environ 35(7):1344–1357

    Article  CAS  PubMed  Google Scholar 

  • Landwehr M, Hilderbrandt U, Wilde P et al (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Le QB, Nkonya E, Mirzabaev A (2016) Biomass productivity-based mapping of global land degradation hotspots. In: Nkonya E, Mirzabaev A, Von Braun J (eds) Economics of land degradation and improvement – a global assessment for sustainable development. Springer International Publishing, Cham, pp 55–84. https://doi.org/10.1007/978-3-319-19168-3_4

  • Lin J, Wang Y, Sun S, Mu C, Yan X (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ 576:234–241

    Article  CAS  PubMed  Google Scholar 

  • Lindermann RG (1994) Role of VAM in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. American Phytopathological Society, St. Paul, pp 1–26

    Google Scholar 

  • López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168(3):294–297

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller J, Bennett RN, García-Garrido JM, Piché Y, Vierheilig H (2002) Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application cannot be attributed to increased glucosinolate levels. J Plant Physiol 159(5):517–523

    Article  Google Scholar 

  • Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosystems 145(1):88–97

    Article  Google Scholar 

  • Matamoros MA, Baird LM, Escuredo PR et al (1999) Stress-induced legume root nodule senescence: physiological, biochemical and structural alterations. Plant Physiol 121:97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Google Scholar 

  • McMillen B, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Mohamed E, Belal AA, Ali RR, Saleh A, Hendawy EA (2019) Land degradation. In: The soils of Egypt. Springer, Cham, pp 159–174. https://doi.org/10.1007/978-3-319-95516-2_9

    Chapter  Google Scholar 

  • Möhner A, Klein RJ (2007) The global environment facility: funding for adaptation or adapting to funds. Stockholm, Stockholm Environment Institute. Kräftriket 2B, 10691 Stockholm, Sweden. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.663.9061&rep=rep1&type=pdf. Accessed on June 2020

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Muralev E, Nazarenko PI, Poplavskij VM, Kuznetsov IA (1997) Seawater desalination. In: Nuclear desalinization of seawater. Proceedings of a symposium in Taejon, Republic of Korea. International Atomic Energy Agency, Vienna, pp 355–366

    Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Article  Google Scholar 

  • Muthukumar T, Bagyaraj DJ, Aswin R (2017) Chapter: 11 arbuscular mycorrhizal fungi: role in alleviating salt stress in crop plants. In: Bagyaraj DJ, Jamaluddin (eds) Microbes for plant stress management. New India Publishing Agency, New Delhi, pp 221–243

    Google Scholar 

  • Nedjimi B, Daoud Y, Touati M (2006) Growth, water relations, proline and ion content of in vitro cultured Atriplex halimus subsp. schweinfurthii as affected by CaCl2. Commun Biometry Crop Sci 1(2):79–89

    Google Scholar 

  • Nkonya E, Anderson W, Kato E, Koo J, Mirzabaev A, von Braun J, Meyer S (2016) Global cost of land degradation. In: economics of land degradation and improvement–a global assessment for sustainable development. Springer International Publishing, Cham, pp 117–165

    Google Scholar 

  • Osman KT (2014) Soil degradation, conservation and remediation. Springer. https://doi.org/10.1007/978-94-007-7590-9

  • Ouziad F, Wilde P, Schmelzer E, Hilderbrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/Hþ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186

    Article  CAS  Google Scholar 

  • Parida SK, Das AB (2005) Salt tolerance and salinity effects on plants. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41(2):149–158

    Article  CAS  Google Scholar 

  • Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet 10(10):e1004664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32(1):181–200

    Article  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35(4):1039–1050

    Article  CAS  Google Scholar 

  • Rinaldelli E, Mancuso S (1996) Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. 1. Short term electro physiological and long term vegetative salt effects. Adv Hortic Sci 10:126–134

    Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10(3):137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R et al (2015) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452. https://doi.org/10.1111/pce.12631

    Article  CAS  PubMed  Google Scholar 

  • Sannazzaro AI, Ruiz OA, Albetro EO, Mene’ndez AB (2006) Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant Soil 285:279–287

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menendez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  CAS  PubMed  Google Scholar 

  • Schubert A, Wyss P, Wiekman A (1992) Occurrence of trehalose in vesicular-arbuscular mycorrhizal fungi and in mycorrhizal roots. J Plant Physiol 140:41–45

    Article  CAS  Google Scholar 

  • Schüßler A, Walker C (2010). The Glomeromycota: a species list with new families and new genera. The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. 16;19. http://amf-phylogeny.com/species_infos/higher_taxa/funneliformis_claroideoglomus_rhizophagus_redeckera.pdf. Accessed on 21 June 2020

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21(5):423–430

    Article  PubMed  Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1995) Mycorrhizal symbiosis. Academic Press, New York, pp 105–160

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhiza symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and rhizobium inoculation. Afr J Biotechnol 11(5):1259–1266

    Article  CAS  Google Scholar 

  • Stahl PD, Christensen M (1991) Population variation in the mycorrhizal fungus Glomus mosseae: breadth of environmental tolerance. Mycol Res 95:300–307

    Article  Google Scholar 

  • Stringer LC (2012) Global land and soil degradation: challenges to soil. 1st global soil week: soils for life. 18:18–22

    Google Scholar 

  • Talaat NB, Shawky BT (2014a) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2014b) Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J Plant Nutr Soil Sci 177(2):199–207

    Article  CAS  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Turkmen O, Sensoy S, Demir S, Erdinc C (2008) Effects of two different AMF species on growth and nutrient content of pepper seedlings grown under moderate salt stress. Afr J Biotechnol 7(4):392–396

    CAS  Google Scholar 

  • United Nations (UN) (2017) World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html. Accessed on 21 June 2020

  • Van Lynden GW, Mantel S, Van Oostrum A (2004) Guiding principles for the quantitative assessment of soil degradation with a focus on salinization, nutrient decline and soil pollution. AGL/MISC/36/2004, ISRIC and FAO, Rome, Italy. https://library.wur.nl/WebQuery/wurpubs/fulltext/37442. Accessed on June 2020

  • von Braun J, Gerber N (2012) The economics of land and soil degradation-toward an assessment of the costs of inaction. In: Recarbonization of the biosphere. Springer, Dordrecht, pp 493–516

    Chapter  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM (2004) Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–137

    Article  PubMed  Google Scholar 

  • Wei-Feng XU, Wei-Ming SHI, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenic Arabidopsis thaliana carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 4:486–495

    Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    Article  CAS  Google Scholar 

  • Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci 4(8):2669–2681

    Article  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hilderbrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    Article  PubMed  Google Scholar 

  • Wu QS, Zou YN, Xia RX (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 5:48. https://doi.org/10.1146/annurev-phyto-073009-114453

    Article  CAS  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkaki U (2000) Advances in chloride nutrition. Adv Agron 68:96–150

    Google Scholar 

  • Yamane K, Rahman Md S, Kawasaki M, Taniguchi M, Miyake H (2004) Pretreatment with a low concentration of methyl viologen decreases the effects of salt stress on chloroplast ultrastructure in rice leaves (Oryza sativa L.). Plant Production Sci 7:435–441

    Article  CAS  Google Scholar 

  • Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249

    Article  PubMed  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture. Ecosyst Environ 95:343–348

    Article  Google Scholar 

  • Yensen NP (2008) Halophyte uses for the twenty-first century. In: Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 367–396

    Google Scholar 

  • Younesi O, Moradi A, Namdari A (2013) Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean (Glycine max). Acta Agric Slov 101(2):219

    Article  Google Scholar 

  • Zhong Qun H, Chao Xing H, Zhibin Z, Zhirong Z, Huai Song W (2007) Changes in antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under Na+cl- stress. Colloids Surf B: Biointerfaces 59:128–133

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improve low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137. https://doi.org/10.1007/s11104-009-0239-z

    Article  CAS  Google Scholar 

  • Zuccarini P (2007) Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ 53:283–289

    Article  CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A., Bhatt, R., Arora, S., Latef, A.A.H.A., Islam, T. (2021). Arbuscular Mycorrhizal Fungi: The Natural Biotechnological Tools for Sustainable Crop Production Under Saline Soils in the Modern Era of Climate Change. In: Aftab, T., Hakeem, K.R. (eds) Plant Growth Regulators. Springer, Cham. https://doi.org/10.1007/978-3-030-61153-8_17

Download citation

Publish with us

Policies and ethics