Skip to main content

Mission Planning for Shepherding a Swarm of Uninhabited Aerial Vehicles

  • Chapter
  • First Online:
Shepherding UxVs for Human-Swarm Teaming

Part of the book series: Unmanned System Technologies ((UST))

  • 387 Accesses

Abstract

Uninhabited aerial vehicles (UAVs) are widely used in many areas for completing complex missions such as tracking targets, search and rescue, farming (shepherding in the traditional sense) and mapping. Mission planning for shepherding a UAV swarm is advantageous for Human-Swarm Teaming. While most research on shepherding see the shepherd as a simple reactive agent, a smart shepherd in a complex environment will need to consider many dimensions and sub-decisions to successfully guide a swarm through complex environment and towards a goal.

In this chapter, we review and offer formal definitions for the sub-problems required for a shepherd to complete a mission successfully. The swarm mission planning system needs to have decision modules capable of solving four main problems: task decomposition, task assignment, path planning and trajectory generation. These sub-problems are coupled differently depending on the scenario. This chapter defines these sub-problems in their general form and gives UAV swarm shepherding problem as a specific application. A brief review of the widely used algorithms for tackling these problems and the state of art of mission planning are also given in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamey, E., Oğuz, A.E., Özgüner, Ü.: Collaborative multi-MSA multi-target tracking and surveillance: a divide & conquer method using region allocation trees. J. Intell. Rob. Syst. 87(3–4), 471–485 (2017)

    Article  Google Scholar 

  2. Agassounon, W., Martinoli, A.: Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 3, pp. 1090–1097. ACM, New York (2002)

    Google Scholar 

  3. Alejo, D., Cobano, J.A., Heredia, G., Ollero, A.: Collision-free 4d trajectory planning in unmanned aerial vehicles for assembly and structure construction. J. Intell. Rob. Syst. 73(1–4), 783–795 (2014)

    Article  Google Scholar 

  4. Allaire, F.C., Tarbouchi, M., Labonté, G., Fusina, G.: FPGA implementation of genetic algorithm for UAV real-time path planning. In: Unmanned Aircraft Systems, pp. 495–510. Springer, Berlin (2008)

    Google Scholar 

  5. Anand, R., Mehrotra, K., Mohan, C.K., Ranka, S.: Efficient classification for multiclass problems using modular neural networks. IEEE Trans. Neural Netw. 6(1), 117–124 (1995)

    Article  Google Scholar 

  6. Auda, G., Kamel, M.: Modular neural networks: a survey. Int. J. Neur. Syst. 9(02), 129–151 (1999)

    Article  Google Scholar 

  7. Bertuccelli, L., Alighanbari, M., How, J.: Robust planning for coupled cooperative UAV missions. In: 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601), vol. 3, pp. 2917–2922. IEEE, Piscataway (2004)

    Google Scholar 

  8. Bertuccelli, L., Choi, H.L., Cho, P., How, J.: Real-time multi-UAV task assignment in dynamic and uncertain environments. In: AIAA Guidance, Navigation, and Control Conference, p. 5776 (2009)

    Google Scholar 

  9. Botelho, S.C., Alami, R.: M+: A scheme for multi-robot cooperation through negotiated task allocation and achievement. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 2, pp. 1234–1239. IEEE, Piscataway (1999)

    Google Scholar 

  10. Campos, M., Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Dynamic scheduling and division of labor in social insects. Adaptive Behav. 8(2), 83–95 (2000)

    Article  Google Scholar 

  11. Chen, H.X., Nan, Y., Yang, Y.: Multi-UAV reconnaissance task assignment for heterogeneous targets based on modified symbiotic organisms search algorithm. Sensors 19(3), 734 (2019)

    Article  Google Scholar 

  12. Chen, Y., Xie, L., He, W., Jiang, Q., Xu, J.: An improved A* algorithm based on divide-and-conquer method for golf unmanned cart path planning. In: International Conference on Artificial Intelligence for Communications and Networks, pp. 497–505. Springer, Berlin (2019)

    Google Scholar 

  13. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Rob. 25(4), 912–926 (2009)

    Article  Google Scholar 

  14. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms, applications, and advances. In: Handbook of Metaheuristics, pp. 250–285. Springer, Berlin (2003)

    Google Scholar 

  18. Duan, H.b., Zhang, X.y., Wu, J., Ma, G.j.: Max-min adaptive ant colony optimization approach to multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments. J. Bionic Eng. 6(2), 161–173 (2009)

    Google Scholar 

  19. Edison, E., Shima, T.: Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Operat. Res. 38(1), 340–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ergezer, H., Leblebicioglu, K.: Path planning for UAVs for maximum information collection. IEEE Trans. Aerosp. Electro. Syst. 49(1), 502–520 (2013)

    Article  Google Scholar 

  21. Ergezer, H., Leblebicioğlu, K.: 3D path planning for multiple UAVs for maximum information collection. J. Intell. Rob. Syst. 73(1–4), 737–762 (2014)

    Article  Google Scholar 

  22. Fei, S., Yan, C., Lin-Cheng, S.: UAV cooperative multi-task assignment based on ant colony algorithm. Acta Aeronautica et Astronautica Sinica 29, 188–s189 (2008)

    Google Scholar 

  23. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Rob. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  24. Foo, J.L., Knutzon, J., Oliver, J., Winer, E.: Three-dimensional path planning of unmanned aerial vehicles using particle swarm optimization. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 6995 (2006)

    Google Scholar 

  25. Fraichard, T.: Trajectory planning in a dynamic workspace: a’ state-time space’approach. Adv. Rob. 13(1), 75–94 (1998)

    Article  Google Scholar 

  26. Fu, Y., Ding, M., Zhou, C.: Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 42(2), 511–526 (2012)

    Article  Google Scholar 

  27. Gallinari, P.: Training of modular neural net systems. In: The Handbook of Brain Theory and Neural Networks, pp. 582–585. MIT Press, Cambridge (1998)

    Google Scholar 

  28. Gautam, S.A., Verma, N.: Path planning for unmanned aerial vehicle based on genetic algorithm & artificial neural network in 3D. In: 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC), pp. 1–5. IEEE, Piscataway (2014)

    Google Scholar 

  29. Gerkey, B.P., Mataric, M.J.: Sold!: Auction methods for multirobot coordination. IEEE Trans. Rob. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  30. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Rob. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  31. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Rob. Syst. 57(1–4), 65 (2010)

    Article  MATH  Google Scholar 

  32. González, V., Monje, C., Moreno, L., Balaguer, C.: UAVs mission planning with flight level constraint using fast marching square method. Rob. Auton. Syst. 94, 162–171 (2017)

    Article  Google Scholar 

  33. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  34. Hartigan, J.A., Wong, M.A.: Algorithm as 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    Google Scholar 

  35. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  36. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  37. Kant, K., Zucker, S.W.: Toward efficient trajectory planning: The path-velocity decomposition. Int. J. Rob. Res. 5(3), 72–89 (1986)

    Article  Google Scholar 

  38. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  MATH  Google Scholar 

  39. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: 49th IEEE Conference on Decision and Control (CDC), pp. 7681–7687. IEEE, Piscataway (2010)

    Google Scholar 

  40. Kavralu, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Rob. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  41. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings., IEEE International Conference on Neural Networks, 1995, vol. 4, pp. 1942–1948. IEEE, Piscataway (1995)

    Google Scholar 

  42. Kim, M.H., Baik, H., Lee, S.: Response threshold model based UAV search planning and task allocation. J. Intell. Rob. Syst. 75(3–4), 625–640 (2014)

    Article  Google Scholar 

  43. Lamont, G.B., Slear, J.N., Melendez, K.: UAV swarm mission planning and routing using multi-objective evolutionary algorithms. In: 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, pp. 10–20. IEEE, Piscataway (2007)

    Google Scholar 

  44. Landén, D., Heintz, F., Doherty, P.: Complex task allocation in mixed-initiative delegation: a UAV case study. In: International Conference on Principles and Practice of Multi-Agent Systems, pp. 288–303. Springer, Berlin (2010)

    Google Scholar 

  45. Latombe, J.C.: Robot Motion Planning, vol. 124. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  46. LaValle, S.M.: Rapidly-Exploring Random Trees: A New Tool for Path Planning. CiteSeer (1998)

    Google Scholar 

  47. Lim, K.K., Ong, Y.S., Lim, M.H., Chen, X., Agarwal, A.: Hybrid ant colony algorithms for path planning in sparse graphs. Soft Comput. 12(10), 981–994 (2008)

    Article  Google Scholar 

  48. Lin, W., Wang, J.Z., Liang, C., Qi, D.: A threshold-based dynamic resource allocation scheme for cloud computing. Procedia Eng. 23, 695–703 (2011)

    Article  Google Scholar 

  49. Liu, J., Wang, W., Li, X., Wang, T., Bai, S., Wang, Y.: Solving a multi-objective mission planning problem for UAV swarms with an improved nsga-iii algorithm. Int. J. Comput. Intell. Systems 11(1), 1067–1081 (2018)

    Article  Google Scholar 

  50. Liu, J., Wang, W., Li, X., Wang, T., Wang, T.: A motif-based mission planning method for UAV swarms considering dynamic reconfiguration. Defence Sci. J. 68(2), 159–166 (2018)

    Article  Google Scholar 

  51. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lu, B.L., Ito, M.: Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Trans. Neur. Netw. 10(5), 1244–1256 (1999)

    Article  Google Scholar 

  53. Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot path planning: a survey. Rob. Auton. Syst. 86, 13–28 (2016)

    Article  Google Scholar 

  54. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland (1967)

    Google Scholar 

  55. Masehian, E., Amin-Naseri, M.: A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning. J. Rob. Syst. 21(6), 275–300 (2004)

    Article  Google Scholar 

  56. Máthé, K., Buşoniu, L.: Vision and control for UAVs: a survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors 15(7), 14,887–14,916 (2015)

    Article  Google Scholar 

  57. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer Science & Business Media, Berlin (1999)

    MATH  Google Scholar 

  58. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.N.: Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 33(6), 898–912 (2003)

    Google Scholar 

  59. Nikolos, I.K., Zografos, E.S., Brintaki, A.N.: UAV path planning using evolutionary algorithms. In: Innovations in Intelligent Machines-1, pp. 77–111. Springer, Berlin (2007)

    Google Scholar 

  60. Oh, G., Kim, Y., Ahn, J., Choi, H.L.: Market-based distributed task assignment of multiple unmanned aerial vehicles for cooperative timing mission. J. Aircraft 54(6), 2298–2310 (2017)

    Article  Google Scholar 

  61. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

    Article  Google Scholar 

  62. Peng, X., Xu, D.: Intelligent online path planning for UAVs in adversarial environments. Int. J. Adv. Rob. Syst. 9(1), 3 (2012)

    Article  Google Scholar 

  63. Peng, Z.h., Wu, J.p., Chen, J.: Three-dimensional multi-constraint route planning of unmanned aerial vehicle low-altitude penetration based on coevolutionary multi-agent genetic algorithm. J. Cent. South Univ. Technol. 18(5), 1502 (2011)

    Google Scholar 

  64. Phung, M.D., Quach, C.H., Dinh, T.H., Ha, Q.: Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. Autom. Constr. 81, 25–33 (2017)

    Article  Google Scholar 

  65. Pohl, A.J., Lamont, G.B.: Multi-objective UAV mission planning using evolutionary computation. In: 2008 Winter Simulation Conference, pp. 1268–1279. IEEE, Piscataway (2008)

    Google Scholar 

  66. Ramirez-Atencia, C., Camacho, D.: Extending QGroundcontrol for automated mission planning of UAVs. Sensors 18(7), 2339 (2018)

    Article  Google Scholar 

  67. Ramirez-Atencia, C., R-Moreno, M.D., Camacho, D.: Handling swarm of UAVs based on evolutionary multi-objective optimization. Prog. Artif. Intell. 6(3), 263–274 (2017)

    Article  Google Scholar 

  68. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: 20th Annual Symposium on Foundations of Computer Science (SFCS 1979), pp. 421–427. IEEE, Piscataway (1979)

    Google Scholar 

  69. Ren, X., Zhang, L., Ahmad, S., Nie, D., Yang, F., Xiang, L., Wang, Q., Shen, D.: Task decomposition and synchronization for semantic biomedical image segmentation (2019). Preprint arXiv:1905.08720

    Google Scholar 

  70. Richards, A., Bellingham, J., Tillerson, M., How, J.: Coordination and control of multiple UAVs. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p. 4588 (2002)

    Google Scholar 

  71. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp. 649–666. Springer, Berlin (2016)

    Google Scholar 

  72. Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for task assignment problem. Microprocess. Microsyst. 26(8), 363–371 (2002)

    Article  Google Scholar 

  73. Salvo, G., Caruso, L., Scordo, A.: Urban traffic analysis through an UAV. Procedia-Soc. Behav. Sci. 111, 1083–1091 (2014)

    Article  Google Scholar 

  74. Schumacher, C., Chandler, P., Pachter, M., Pachter, L.: Constrained optimization for UAV task assignment. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p. 5352 (2004)

    Google Scholar 

  75. Shima, T., Schumacher, C.: Assigning cooperating UAVs to simultaneous tasks on consecutive targets using genetic algorithms. J. Oper. Res. Soc. 60(7), 973–982 (2009)

    Article  MATH  Google Scholar 

  76. Shorakaei, H., Vahdani, M., Imani, B., Gholami, A.: Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm. Robotica 34(4), 823–836 (2016)

    Article  Google Scholar 

  77. Stentz, A.: Optimal and efficient path planning for partially known environments. In: Intelligent Unmanned Ground Vehicles, pp. 203–220. Springer, Berlin (1997)

    Google Scholar 

  78. Stone, P., Veloso, M.: Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time strategic teamwork. Artif. Intell. 110(2), 241–273 (1999)

    Article  MATH  Google Scholar 

  79. Suzuki, S., Komatsu, Y., Yonezawa, S., Masui, K., Tomita, H.: Online four-dimensional flight trajectory search and its flight testing. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, p. 6475 (2005)

    Google Scholar 

  80. Van Den Berg, J.P., Overmars, M.H.: Roadmap-based motion planning in dynamic environments. IEEE Trans. Rob. 21(5), 885–897 (2005)

    Article  Google Scholar 

  81. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, vol. 1, pp. 577–584 (2001)

    Google Scholar 

  82. Wang, L., Su, F., Zhu, H., Shen, L.: Active sensing based cooperative target tracking using UAVs in an urban area. In: 2010 2nd International Conference on Advanced Computer Control, vol. 2, pp. 486–491. IEEE, Piscataway (2010)

    Google Scholar 

  83. Yan, F., Liu, Y.S., Xiao, J.Z.: Path planning in complex 3D environments using a probabilistic roadmap method. Int. J. Autom. Comput. 10(6), 525–533 (2013)

    Article  Google Scholar 

  84. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Rob. Syst. 10(12), 399 (2013)

    Article  Google Scholar 

  85. Yang, Y., Zhou, C., Tian, Y.: Swarm robots task allocation based on response threshold model. In: 2009 4th International Conference on Autonomous Robots and Agents, pp. 171–176. IEEE, Piscataway (2009)

    Google Scholar 

  86. Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y.: Survey of robot 3D path planning algorithms. J. Control Sci. Eng. 2016, 5 (2016)

    Google Scholar 

  87. Yazdani, D., Omidvar, M.N., Branke, J., Nguyen, T.T., Yao, X.: Scaling up dynamic optimization problems: A divide-and-conquer approach. IEEE Trans. Evol. Comput. 24, 1–15 (2019)

    Article  Google Scholar 

  88. Yershova, A., Jaillet, L., Siméon, T., LaValle, S.M.: Dynamic-domain RRTs: Efficient exploration by controlling the sampling domain. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (2005)

    Google Scholar 

  89. Yu, X., Chen, W.N., Gu, T., Yuan, H., Zhang, H., Zhang, J.: Aco-A*: Ant colony optimization plus A* for 3d traveling in environments with dense obstacles. IEEE Trans. Evol. Comput. 23, 617–631 (2018)

    Article  Google Scholar 

  90. Zhang, B., Duan, H.: Predator-prey pigeon-inspired optimization for UAV three-dimensional path planning. In: International Conference in Swarm Intelligence, pp. 96–105. Springer, Berlin (2014)

    Google Scholar 

  91. Zhang, B., Duan, H.: Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 97–107 (2015)

    Article  Google Scholar 

  92. Zhang, S., Zhou, Y., Li, Z., Pan, W.: Grey wolf optimizer for unmanned combat aerial vehicle path planning. Adv. Eng. Softw. 99, 121–136 (2016)

    Article  Google Scholar 

  93. Zhang, L., Chen, J., Deng, F., Bi, Y., Phang, S.K., Chen, X.: Trajectory planning for improving vision-based target geolocation performance using a quad-rotor UAV. IEEE Trans. Aerosp. Electron. Syst. 55, 2382–2394 (2018)

    Article  Google Scholar 

  94. Zhou, Z., Feng, J., Gu, B., Ai, B., Mumtaz, S., Rodriguez, J., Guizani, M.: When mobile crowd sensing meets UAV: energy-efficient task assignment and route planning. IEEE Trans. Commun. 66(11), 5526–5538 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Anavatti, S., Garratt, M., Abbass, H.A. (2021). Mission Planning for Shepherding a Swarm of Uninhabited Aerial Vehicles. In: Abbass, H.A., Hunjet, R.A. (eds) Shepherding UxVs for Human-Swarm Teaming. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-60898-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60898-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60897-2

  • Online ISBN: 978-3-030-60898-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics