Skip to main content

A Collective Action Simulation Platform

  • Conference paper
  • First Online:
Multi-Agent-Based Simulation XX (MABS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12025))

Abstract

In this paper, we discuss some types of expectation that contribute to the behaviour of social agents, and investigate the role that these social expectations can play in the resolution of collective action problems. We describe our Collective Action Simulation Platform (CASP), a framework that allows us to integrate the Java-based Repast Simphony platform with a Prolog-based event calculus interpreter. This allows us to run simulations of agents who make reference to social expectations when reasoning about which actions to perform. We demonstrate the use of CASP in modelling a simple scenario involving agents in a collective action problem, showing that agents who are informed by social expectations can be led to cooperative behaviour that would otherwise be considered “non-rational”.

Stephen Cranefield acknowledges funding from the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand.

The second and third authors contributed to this paper while working at the University of Otago. Hannah Clark-Younger is now at Soul Machines, hannah.clark-younger@soulmachines.com.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we are using discrete time simulations, there is always a unique next state—in effect we are using a version of the discrete event calculus  [20].

  2. 2.

    This would apply especially to obligations, which are specialised types of expectations. Currently CASP supports only generic expectations that a programmer can choose to interpret as (e.g.) obligations or commitments within the EC rules provided.

  3. 3.

    https://github.com/maxant/rules.

  4. 4.

    The programmer can also choose to model the effects of physical actions using the EC, or these can be modelled entirely within the Repast agents’ Java code.

  5. 5.

    https://github.com/mvel/mvel.

  6. 6.

    Further extensions to the expectation event calculus reasoner could allow more complex temporal expressions to be used, e.g. a given event should occur once within every occurrence of a recurring time period.

References

  1. Alrawagfeh, W.: Norm representation and reasoning: a formalization in event calculus. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS (LNAI), vol. 8291, pp. 5–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44927-7_2

    Chapter  Google Scholar 

  2. Artikis, A., Sergot, M.: Executable specification of open multi-agent systems. Logic J. IGPL 18(1), 31–65 (2010)

    Article  MathSciNet  Google Scholar 

  3. Artikis, A., Sergot, M.J., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015)

    Article  Google Scholar 

  4. Bach, L., Helvik, T., Christiansen, F.: The evolution of n-player cooperation–threshold games and ESS bifurcations. J. Theor. Biol. 238(2), 426–434 (2006)

    Article  MathSciNet  Google Scholar 

  5. Castelfranchi, C.: Mind as an anticipatory device: for a theory of expectations. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 258–276. Springer, Heidelberg (2005). https://doi.org/10.1007/11565123_26

    Chapter  Google Scholar 

  6. Castiglione, F.: Introduction to agent based modeling and simulation. In: Encyclopedia of Complexity and Systems Science, pp. 197–200, Springer (2009)

    Google Scholar 

  7. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event calculus. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 91–96. Morgan Kaufmann (2009)

    Google Scholar 

  8. Cranefield, S.: Agents and expectations. In: Balke, T., Dignum, F., van Riemsdijk, M.B., Chopra, A.K. (eds.) COIN 2013. LNCS (LNAI), vol. 8386, pp. 234–255. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07314-9_13

    Chapter  Google Scholar 

  9. Erickson, T.: Social computing. In: Soegaard, M., Dam, R.F. (eds.) The Encyclopedia of Human-Computer Interaction, Chapter 4, 2nd edn. (nd). https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/social-computing

  10. Fehr, E., Fischbacher, U.: Why social preferences matter: the impact of non-selfish motives on competition. Econ. J. 112, C1–C33 (2002)

    Article  Google Scholar 

  11. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968)

    Article  Google Scholar 

  12. Hardin, R.: Collective action as an agreeable n-person prisoner’s dilemma. Behav. Sci. 15, 472–481 (1971)

    Article  Google Scholar 

  13. Hardin, R.: Collective Action. Johns Hopkins University Press, Baltimore (1982)

    Google Scholar 

  14. Hardin, R.: The free rider problem. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University, Spring 2013 edn. (2013). https://plato.stanford.edu/archives/spr2013/entries/free-rider/

  15. Höllander, H.: A social exchange approach to voluntary cooperation. Am. Econ. Rev. 80, 1157–1167 (1990)

    Google Scholar 

  16. Holzinger, K.: The problems of collective action: a new approach. MPI Collective Goods Preprint No. 2003/2, SSRN (2003). https://doi.org/10.2139/ssrn.399140

  17. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4, 67–95 (1986)

    Article  Google Scholar 

  18. Leyton-Brown, K., Shoham, Y.: Essentials of Game Theory: A Concise, Multidisciplinary Introduction. Morgan and Claypool Publishers, San Rafael (2008)

    MATH  Google Scholar 

  19. Malinowski, B.: Crime and Custom in Savage Society. K. Paul, Trench, Trubner & Co., Ltd., London (1926)

    Google Scholar 

  20. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann, San Francisco (2006)

    Book  Google Scholar 

  21. Nikolai, C., Madey, G.: Tools of the trade: a survey of various agent based modeling platforms. J. Artif. Soc. Soc. Simul. 12(2), article 2 (2009). ISSN 1460–7425. http://jasss.soc.surrey.ac.uk/12/2/2.html

  22. North, M.J., et al.: Complex adaptive systems modeling with Repast Simphony. Complex Adapt. Syst. Model. 1, 3 (2013)

    Article  Google Scholar 

  23. Olson, M.: The Logic of Collective Action: Public Goods and the Theory of Groups. Harvard University Press, Cambridge (1965)

    Google Scholar 

  24. Ostrom, E.: Governing the Commons. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  25. Ostrom, E., Ahn, T.K.: Foundations of Social Capital. Edward Elgar Publishing, Cheltenham (2003)

    Google Scholar 

  26. Pacheco, J.M., Santos, F.C., Souza, M.O., Skyrms, B.: Evolutionary dynamics of collective action in N-person stag hunt dilemmas. Proc. R. Soc. Lond. B Biol. Sci. 276(1655), 315–321 (2009)

    Google Scholar 

  27. Papadimitriou, C., Roughgarden, T.: Computing equilibria in multi-player games. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 82–91. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  28. Petruzzi, P.E., Busquets, D., Pitt, J.: Social capital as a complexity reduction mechanism for decision making in large scale open systems. In: 2014 IEEE 8th International Conference on Self-Adaptive and Self-Organizing Systems, pp. 145–150. IEEE (2014)

    Google Scholar 

  29. Petruzzi, P.E., Busquets, D., Pitt, J.: A generic social capital framework for optimising self-organised collective action. In: 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems, pp. 21–30. IEEE (2015). ISSN 1949–3673. https://doi.org/10.1109/SASO.2015.10

  30. Petruzzi, P.E., Pitt, J., Busquets, D.: Inter-institutional social capital for self-organising ‘nested enterprises’. In: 2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems, pp. 90–99. IEEE (2016)

    Google Scholar 

  31. Pitt, J., Nowak, A.: The reinvention of social capital for socio-technical systems. IEEE Technol. Soc. Mag. 33(1), 27–33 (2014)

    Article  Google Scholar 

  32. Pitt, J., Schaumeier, J., Artikis, A.: Axiomatization of socio-economic principles for self-organizing institutions: concepts, experiments and challenges. ACM Trans. Auton. Adapt. Syst. 7(4), 39:1–39:39 (2012). https://doi.org/10.1145/2382570.2382575

  33. Reuben, E.: The evolution of theories of collective action. M.Phil thesis, Tinbergen Institute (2003)

    Google Scholar 

  34. Schuler, D.: Social computing. Commun. ACM 37(1), 28–29 (1994)

    Article  Google Scholar 

  35. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9_17

    Chapter  Google Scholar 

  36. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory Pract. Logic Program. 12(1–2), 67–96 (2012). ISSN 1471–0684

    Article  MathSciNet  Google Scholar 

  37. Yolum, P., Singh, M.: Reasoning about commitments in the event calculus: an approach for specifying and executing protocols. Ann. Math. Artif. Intell. 42, 227–253 (2004)

    Article  MathSciNet  Google Scholar 

  38. Young, H.P.: Social norms. In: Durlauf, S., Blume, L. (eds.) The New Palgrave Dictionary of Economics, 2nd edn., Palgrave Macmillan (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Cranefield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cranefield, S., Clark-Younger, H., Hay, G. (2020). A Collective Action Simulation Platform. In: Paolucci, M., Sichman, J.S., Verhagen, H. (eds) Multi-Agent-Based Simulation XX. MABS 2019. Lecture Notes in Computer Science(), vol 12025. Springer, Cham. https://doi.org/10.1007/978-3-030-60843-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60843-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60842-2

  • Online ISBN: 978-3-030-60843-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics