Skip to main content

Phosphate-Solubilizing Fungi: Current Perspective and Future Need for Agricultural Sustainability

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Phosphorus (P) is the second utmost significant element required by the plants only after nitrogen. It is necessary for plants to carry out major metabolic process, signal transduction, respiration, macromolecular biosynthesis, and energy transfer. Phosphorous is present in ample amount in the soil in both organic and inorganic forms; however, its bioavailability for the plants is very limited. Further, phosphatic fertilizers applied in the fields quickly transformed into insoluble forms. Therefore, again very little percentage of the applied phosphorus is available to plants, making continuous application of fertilizers necessary. Thus, the extensive use of chemical phosphatic fertilizers causes soil fertility reduction and environmental pollution. In this perspective, phosphate-solubilizing microorganisms (PSMs) provide an eco-friendly alternative for the farmers. Bacteria, cyanobacteria, and fungi are the major candidates of PSM. Although PSMs are commonly found in soil, their population may not be high enough to compete with other bacterial community and establish in the rhizosphere. Therefore, inoculation with higher concentration of PSM strains would be more beneficial for phosphate-solubilizing activity in the root environment. Penicillium, Aspergillus, Rhizopus, Fusarium, and Sclerotium are the most studied genera among phosphate-solubilizing fungus (PSF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achouak W, Haichar FZ (2019) Stable isotope probing of microbiota structure and function in the plant rhizosphere. Methods Mol Biol 2046:233–243

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci 26(1):1–20

    Article  Google Scholar 

  • Akins PT, Jian B (2019) The frozen brain state of Cryptococcus gattii: a globe-trotting, tropical, neurotropic fungus. Neurocrit Care 30:272–279

    Article  PubMed  Google Scholar 

  • Aleksieva P, Mutafov S (1997) Continuous culture of Humicola lutea 120-5 for acid proteinase production. W J Microbiol Biotechnol 13(3):353–357

    Article  CAS  Google Scholar 

  • Aleksieva P, Peeva L (2000) Investigation of acid proteinase biosynthesis by the fungus Humicola lutea in an airlift bioreactor. Enzy Microb Technol l2(5):402–405

    Article  Google Scholar 

  • Amann R, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 12:231–236

    Article  CAS  PubMed  Google Scholar 

  • Ambrose KV, Tian Z, Wang Y, Smith J, Zylstra G, Huang B, Belanger FC (2015) Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae. Sci Rep 5:10939

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61(3):972–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19(2):90–98

    Article  CAS  PubMed  Google Scholar 

  • Basim E, Basim H (2001) Pulsed-Field Gel Electrophoresis (PFGE) technique and its use in molecular biology. Turk J Biol 25:405–418

    CAS  Google Scholar 

  • Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove- a review. Biocat Agric Biotechnol 3(2):97–110

    Article  Google Scholar 

  • Bertani G, Savo Sardaro ML, Neviani E, Lazzi C (2019) AFLP protocol comparison for microbial diversity fingerprinting. J Appl Genet 60:217–223

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76(14):4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blears MJ, DeGrandis SA, Lee H, Trevros JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Indust Microbiol Biotechnol 21:99–114

    Article  CAS  Google Scholar 

  • Bruto M, Prigent-Combaret C, Muller D, Moenne-Loccoz Y (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci Rep 4:6261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley DH, Huangyutitham V, Hsu SF, Nelson TA (2007) Stable isotope probing with 15N achieved by disentangling the effects of genome G+C content and isotope enrichment on DNA density. Appl Environ Microbiol 73:3189–3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charyulu KD, Biswas S (2010) Economics and Efficiency of Organic Farming vis-à-vis Conventional Farming in India. IIMA Working Papers WP2010-04-03, Indian Institute of Management Ahmedabad, Research and Publication Department

    Google Scholar 

  • Clerc A, Manceau C, Nesme X (1998) Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies iii of Pseudomonas syringae. Appl Environ Microbiol 64(4):1180–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash B, Soni R, Kumar V, Suyal DC, Dash D, Goel R (2019) Mycorrhizosphere: microbial interactions for sustainable agricultural production. In: Varma A, Choudhary D (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore, pp 321–338

    Chapter  Google Scholar 

  • Demirev PA, Fenselau C (2008) Mass spectrometry for rapid characterization of microorganisms. Annu Rev Anal Chem 1:71–93

    Article  CAS  Google Scholar 

  • Deng S, Elkins JG, Da LH, Botero LM, McDermott TR (2001) Cloning and characterization of a second acid phosphatase from Sinorhizobium meliloti strain 104A14. Arch Microbiol 176(4):255–263

    Article  CAS  PubMed  Google Scholar 

  • Economist (2015) India is reforming other bits of its economy, but not farming.. Retrieved from https://www.economist.com/news/asia/21656241-india-reforming-other-bits-its-economy-not-farming-time-warp

  • Ezawa T, Saito K (2018) How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytol 220:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Farhat MB, Farhat A, Bezar W, Kammoun R, Bauchaala K, Fourati A, Antoun H, Bejar S, Chouayekh H (2009) Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Arch Microbiol 191:815–824

    Article  PubMed  CAS  Google Scholar 

  • Fasim M, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Florek M, Krol J, Wozniak-Biel A (2019) Atypical URA5 gene restriction fragment length polymorphism banding profile in Cryptococcus neoformans strains. Folia Microbiol 64:857–860

    Article  CAS  Google Scholar 

  • Fonseca HM, Berbara RL (2008) Does Lunularia cruciata form symbiotic relationships with either Glomus proliferum or G. Intraradices? Mycol Res 112:1063–1068

    Article  PubMed  Google Scholar 

  • Forbes (2017) How sensors, robotics and artificial intelligence will transform agriculture. Retrieved from https://www.forbes.com/sites/jenniferhicks/2017/03/19/how-sensors-robotics-and-artificial-intelligence-will-transform-agriculture/#73c4a393384b

  • FrÄ…c M, Gryta A, Oszust K, Kotowicz N (2016) Fast and accurate microplate method (biolog MT2) for detection of Fusarium fungicides resistance/sensitivity. Front Microbiol 7(489):1–16

    Google Scholar 

  • Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65

    Article  Google Scholar 

  • Gaiarsa S, Batisti Biffignandi G, Esposito EP, Castelli M, Jolley KA, Brisse S, Sassera D, Zarrilli R (2019) Comparative analysis of the two Acinetobacter baumannii Multilocus Sequence Typing (MLST) schemes. Front Microbiol 10(930):1–14

    Google Scholar 

  • Giri K, Paliwal R, Suyal DC, Mishra G, Pandey S, Rai JPN, Verma PK (2015) Potential application of plant-microbe interaction for restoration of degraded ecosystems. In: Singh S, Srivastava K (eds) Handbook of research on uncovering new methods for ecosystem management through bioremediation. IGI Global, Hershey, pp 255–285

    Chapter  Google Scholar 

  • Goel R, Suyal DC, Narayan DB, Soni R (2017) Soil metagenomics: a tool for sustainable agriculture. In: Kalia V, Shouche Y, Purohit H, Rahi P (eds) Mining of microbial wealth and metagenomics. Springer Nature, Singapore, pp 217–225

    Chapter  Google Scholar 

  • Goes DKCGP, Fisher MLDC, Cattelan AJ, Nogueira MA, Carvalho CGPD, Oliveira ALMD (2012) Biochemical and molecular characterization of high population density bacteria isolated from sunflower. J Microbiol Biotechnol 22(4):437–447

    Article  CAS  Google Scholar 

  • Guilan L, Shaohui Y, Minggang L, Yake Q, Jiehua W (2009) Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnol Lett 31:1297–1303

    Article  CAS  Google Scholar 

  • Han SH, Kim CH, Lee JH, Park JY, Cho SM, Park SK, Kim YC (2008) Inactivation of pqq genes of Enterobacter intermedium 60-2G reduces antifungal activity and induction of systemic resistance. FEMS Microbiol Lett 282(1):140–146

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart MM, Antunes PM, Chaudhary VB, Abbott LK (2017) Fungal inoculants in the field: is the reward greater than the risk? Funct Ecol 32:126–135

    Article  Google Scholar 

  • Hassan MM, Farid MA, Gaber A (2019) Rapid identification of Trichoderma koningiopsis and Trichoderma longibrachiatum using sequence-characterized amplified region markers. Egypt J Biol Pest Control 29(13):1–8

    Google Scholar 

  • IBEF (2017) Agriculture in India: information about Indian agriculture & its importance.. Retrieved from https://www.ibef.org/industry/agriculture-india.aspx

  • Iefuji H, Takashi W, Hiroko I, Kazuo M, Tsutomu F (2009) Cloning and characterization of a novel phytase from wastewater treatment yeast Hansenula fabianii J640 and expression in Pichia pastoris. J Biosci Bioeng 108(3):225–230

    Article  PubMed  CAS  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Johansson A, Koskiniemi S, Gottfridsson P, Wistrom J, Monsen T (2006) Multiple-locus variable-number tandem repeat analysis for typing of Staphylococcus epidermidis. J Clin Microbiol 44(1):260–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi D, Chandra R, Suyal DC, Kumar S, Goel R (2019) Impact of bioinoculants Pseudomonas jesenii MP1 and Rhodococcus qingshengii S10107 on Cicer arietinum yield and soil nitrogen status. Pedosphere 29(3):388–399

    Google Scholar 

  • Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 4917256:1–7

    Article  CAS  Google Scholar 

  • Kathuria S, Sharma C, Singh PK, Agarwal P, Agarwal K, Hagen F, Meis JF, Chowdhary A (2015) Molecular epidemiology and in-vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment length polymorphism and microsatellite typing. PLoS One 10(3):e0118997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur R, Saxena A, Sangwan P, Yadav AN, Kumar V, Dhaliwal HS (2017) Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nusantara Biosci 9(1):68–76

    Article  Google Scholar 

  • Kikuchi Y, Hijikata N, Ohtomo R, Handa Y, Kawaguchi M, Saito K et al (2016) Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol 211:1202–1208. https://doi.org/10.1111/nph.14016

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997) Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153(2):273–277

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1998) Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiol Lett 159(1):121–127

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS, Kim YC (2003) Cloning and expression of pyrroloquinoline quinine (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Curr Microbiol 47(6):457–461

    Article  CAS  PubMed  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y (2019) Dynamic phosphate uptake in Arbuscular Mycorrhizal roots under field conditions. Front Microbiol 6(159):1–12

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS et al (2019a) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting Rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64

    Google Scholar 

  • Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V et al (2020a) Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 157–176

    Google Scholar 

  • Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020b) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501

    Article  Google Scholar 

  • Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2020c) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India B. https://doi.org/10.1007/s40011-019-01151-4

  • Kumar S, Suyal DC, Dhauni N, Bhoriyal M, Goel R (2014) Relative plant growth promoting potential of Himalayan psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum L., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.) Gaertn. Afr J Microbiol 8(50):3931–3943

    Google Scholar 

  • Kwon YJ, Shin JH, Byun SA, Choi MJ, Won EJ, Lee D, Lee SY, Chun S, Lee JH, Choi HJ, Kee SJ, Kim SH, Shin MG (2019) Candida auris clinical isolates from South Korea: identification, antifungal susceptibility, and genotyping. J Clin Microbiol 57(4):e01624–e01618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu D, Cao B, Han W, Liu Y, Liu F, Guo X, Bastin AD, Feng L, Wang L (2006) Development of a serotype-specific DNA microarray for identification of some Shigella and pathogenic Escherichia coli strains. J Clin Microbiol 44(12):4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Raoult D, Fournier P (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–916

    Article  CAS  PubMed  Google Scholar 

  • Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinine. J Bacteriol 174(18):5814–5819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci 95(6):3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makino K, Shinagawa H, Amemura M, Kawamoto T, Yamada M, Nakata A (1989) Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 210(3):551–559

    Article  CAS  PubMed  Google Scholar 

  • Man-Jin In, Sung-Won Seo, Nam-Soon Oh (2008) Fermentative production and application of acid phytase by Saccharomyces cerevisiae CY strain. Afr J Biotechnol 7(17):3115–3120

    Google Scholar 

  • Martynov V, Chizhik V, Sokolova E, Kuznetsova M, Khavkin E (2019) Polymorphism of avirulence genes in potato late blight pathogen Phytophthora infestans as characterized by SSCP analysis. Agric Gene 13:100093

    Article  Google Scholar 

  • Masanto HA, Wibowo A, Subandiyah S, Shimizu M, Suga H, Kageyama K (2019) Genetic diversity of Phytophthora palmivora isolates from Indonesia and Japan using rep-PCR and microsatellite markers. J Gen Plant Pathol 85:367–381

    Article  CAS  Google Scholar 

  • Mazid M, Khan TA (2015) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3(3):1–14

    Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26(4):267–286

    Article  CAS  Google Scholar 

  • Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barely (Hordeum vulgare L.). American-Eurasian J Agric Environ Sci 3(6):822–828

    Google Scholar 

  • Micheva-Viteva S, Tchorbanov B, Aleksieva P, Lazarova V (2000) Acid phosphatases excreted by Humicola lutea 120-5 in casein-containing medium. W J Microbiol Biotechnol 16(8–9):859–863

    Article  CAS  Google Scholar 

  • Morgan MC, Boyette M, Goforth C, Sperry KV, Greene SR (2009) Comparison of the Biolog omni log identification system and 16S ribosomal RNA gene sequencing for accuracy in identification of atypical bacteria of clinical origin. J Microbiol Methods 79(3):336–343

    Article  CAS  PubMed  Google Scholar 

  • Mummey D, Holben W, Six J, Stahl P (2006) Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microb Ecol 51:404–411

    Article  PubMed  Google Scholar 

  • Nautiyal CS (2000) An efficient microbiological grown medium for screening phosphate solubilizing microorganisms. Fed Eur Mater Soc Microbiol Lett 170:265–270

    Article  Google Scholar 

  • Nelsona KY, Razbana B, Mc Martina DW, Cullimoreb DR, Takaya O, Patrick DK (2010) A rapid methodology using fatty acid methyl esters to profile bacterial community structures in microbial fuel cells. Bioelectrochemistry 78(1):80–86

    Article  CAS  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109

    Article  CAS  PubMed  Google Scholar 

  • Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  CAS  PubMed  Google Scholar 

  • Owen RJ (1989) Chromosomal DNA fingerprinting-a new method of species and strain identification applicable to microbial pathogens. J Med Microbiol 30:89–99

    Article  CAS  PubMed  Google Scholar 

  • Patel DK, Archana G, Kumar GN (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 56(2):168–174

    Article  CAS  PubMed  Google Scholar 

  • Pavlova K, Gargova S, Hristozova T, Tankova Z (2008) Phytase from Antarctic yeast strain Cryptococcuus laurentii AL27. Folia Microbiol 53(1):29–34

    Article  CAS  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock weathering desert plants root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Li A, Tan K, Guo S, Chen Y, Wang F, Wong KH (2019) Universal plasmids to facilitate gene deletion and gene tagging in filamentous fungi. Fungal Genet Biol 125:28–35

    Article  CAS  PubMed  Google Scholar 

  • Rai PK, Singh M, Anand K, Saurabhj S, Kaur T, Kour D et al (2020) Role and potential applications of plant growth promotion rhizobacteria for sustainable agriculture. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 49–60

    Google Scholar 

  • Rajwar J, Chandra R, Suyal DC, Tomer S, Kumar S, Goel R (2018) Comparative phosphate solubilizing efficiency of psychrotolerant Pseudomonas jesenii MP1 and Acinetobacter sp. ST02 against chickpea for sustainable hill agriculture. Biologia 73(8):793–802

    Article  CAS  Google Scholar 

  • Rani A, Souche Y, Goel R (2013) Comparative in situ remediation potential of Pseudomonas putida 710A and Commamonas aquatica 710B using plant (Vigna radiata (L.) wilczek) assay. Ann Microbiol 63(3):923–928

    Article  CAS  Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol 56:53–64

    Article  Google Scholar 

  • Rawat N, Sharma M, Suyal DC, Singh DK, Joshi D, Singh P, Goel R (2019) Psyhcrotolerant bio-inoculants and their co-inoculation to improve Cicer arietinum growth and soil nutrient status for sustainable mountain agriculture. J Soil Sci Plant Nutr 19(3):639–647

    Article  CAS  Google Scholar 

  • Reilly TJ, Felts RL, Henzl MT, Calcutt MJ, Tanner JJ (2006) Characterization of recombinant Francisella tularensis acid phosphatase A. Protein Exp Purif 45(1):132–141

    Article  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four-hundred-million year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Rossolini GM, Gonzalez T, Glick BR (2000) Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Curr Microbiol 40(6):362–366

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth promoting bacteria Azospirillium spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • Rossolini GM, Schippa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell Mol Life Sci 54(8):833–850

    Article  CAS  PubMed  Google Scholar 

  • Sano K, Fukuhara H, Nakamura Y (1999) Phytase of the yeast Arxula adeninivorans. Biotechnol Lett 21:33–38

    Article  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-Single-Strand Conformation Polymorphism for 16S rRNA-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian M, Gasol JM (2019) Visualization is crucial for understanding microbial processes in the ocean. Phil Trans R Soc B 374(1786):1–7

    Article  CAS  Google Scholar 

  • Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992) Purification and properties of the phytase from Schwanniomyces castellii. J Ferment Bioeng 74:7–11

    Article  CAS  Google Scholar 

  • Selvi K, John-Paul B, Ravindran JA, Vijaya V (2011) Quantitative estimation of insoluble inorganic phosphate solubilization. Int J Sci Nat 2(2):292–295

    Google Scholar 

  • Shahab S, Ahmed N, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4(11):1312–1316

    Google Scholar 

  • Sharma A, Ahluwalia O, Tripathi AD, Singh G, Arya SK (2020) Phytases and their pharmaceutical applications: mini-review. Phytases and their pharmaceutical applications: mini-review. Biocat Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.101439

  • Shin HD, Kim DU, Seong CN, Song HG, Jong-Ok K (2012) Genetic and phenotypic diversity of carbofuran-degrading bacteria isolated from agricultural soils. J Microbiol Biotechnol 22(4):448–456

    Article  CAS  PubMed  Google Scholar 

  • Siles JA, Ohlinger B, Cajthaml T, Kistler E, Margesin R (2018) Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy). Sci Rep 8(1903):1–14

    CAS  Google Scholar 

  • Singh M, Malik MA, Singh DK, Doimari S, Bhavna SR (2019) Multilocus variable number tandem repeat analysis (MLVA)-typing of Brucella abortus isolates of India reveals limited genetic diversity. Trop Anim Health Prod. https://doi.org/10.1007/s11250-019-02110-x

  • Soni SK, Magdum A, Khire JM (2010) Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563. World J Microbiol Biotechnol 26(11):2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni R, Suyal DC, Agrawal K, Yadav A, Souche Y, Goel R (2015) Differential proteomic analysis of Himalayan psychrotolerant diazotroph Pseudomonas palleroniana N26 strain under low temperature diazotrophic conditions. CryoLetters 36(2):74–82

    PubMed  Google Scholar 

  • Soni R, Suyal DC, Sai S, Goel R (2016) Exploration of nifH gene through soil metagenomes of the western Indian Himalayas. 3Biotech 6(1):1–4

    Google Scholar 

  • Suyal DC, Tewari L (2013a) In vitro degradation of natural animal feed substrates by intracellular phytase producing Shiwalik Himalayan budding yeasts. Afri J Microbiol Res 7(47):5374–5383

    Article  CAS  Google Scholar 

  • Suyal DC, Tewari L (2013b) Phytase and its applications. Int J Curr Res 5(10):3042–3043

    Google Scholar 

  • Suyal DC, Shukla A, Goel R (2014a) Growth promotory potential of the psychrophilic Diazotroph Pseudmonas migulae S10724 against native Vigna radiata (L.) Wilczek. 3Biotech 4:665–668

    Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2014b) Differential proteomics in response to low temperature diazotrophy of Himalayan psychrophilic nitrogen fixing Pseudomonas migulae S10724 strain. Curr Microbiol 68(4):543–550

    Article  CAS  PubMed  Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015a) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). 3Biotech 5(4):433–441

    Google Scholar 

  • Suyal DC, Yadav A, Shouche Y, Goel R (2015b) Bacterial diversity and community structure of Western Indian Himalayan red kidney bean (Phaseolus vulgaris L.) rhizosphere as revealed by 16S rRNA gene sequences. Biologia 70(3):305–313

    Article  CAS  Google Scholar 

  • Suyal DC, Kumar S, Yadav A, Shouche Y, Goel R (2017) Cold stress and nitrogen deficiency affected protein expression of psychrotrophic Dyadobacter psychrophilus B2 and Pseudomonas jessenii MP1. Front Microbiol 8(430):1–6

    Google Scholar 

  • Suyal DC, Kumar S, Joshi D, Soni R, Goel R (2018) Quantitative proteomics of psychotrophic diazotroph in response to nitrogen deficiency and cold stress. J Proteome 187:235–242

    Article  CAS  Google Scholar 

  • Suyal DC, Joshi D, Debbarma P, Soni R, Dash B, Goel R (2019a) Soil metagenomics: unculturable microbial diversity and its function. In: Varma A, Choudhary D (eds) Mycorrhizosphere and pedogenesis. Springer, Singapore, pp 355–362

    Chapter  Google Scholar 

  • Suyal DC, Kumar S, Joshi D, Yadav A, Shouche Y, Goel R (2019b) Comparative overview of red kidney bean (Phaseolus valgaris) rhizospheric bacterial diversity in perspective of altitudinal variations. Biologia 74(10):1405–1413

    Article  CAS  Google Scholar 

  • Suyal DC, Joshi D, Kumar S, Soni R, Goel R (2020) Differential protein profiling of soil diazotroph Rhodococcus qingshengii S10107 towards low-temperature and nitrogen deficiency. Sci Rep. https://doi.org/10.1038/s41598-019-56592-8

  • Swapna AL (2013) Development of biofertilizers and its future perspective. J Pharm 4:327–332

    Google Scholar 

  • Tomer S, Suyal DC, Goel R (2016) Biofertilizers: a timely approach for sustainable agriculture. In: Choudhary DK, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer Nature Singapore Pvt Ltd, Singapore, pp 375–395

    Chapter  Google Scholar 

  • Tomer S, Suyal DC, Rajwar J, Yadav A, Shouche Y, Goel R (2017) Isolation and characterization of phosphate solubilizing bacteria from Western Indian Himalayan soils. 3Biotech 7(2):1–5

    Google Scholar 

  • Torriani A, Ludtke DN (1985) The pho regulon of Escherichia coli. In: Schaechter M, Neidhart FC, Ingraham J, Kjeldgaard NO (eds) The molecular biology of bacterial growth. Jones and Bartlett Publishers, Boston, pp 224–242

    Google Scholar 

  • Veide J, Andlid T (2006) Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. Int J Food Microbiol 108:60–67

    Article  CAS  PubMed  Google Scholar 

  • Wang RF, Beggs ML, Robertson LH, Cerniglia CE (2002) Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol Lett 213:175–182

    Article  CAS  PubMed  Google Scholar 

  • Wanner BL (1987) Control of phoR-dependent bacterial alkaline phosphatase clonal variation by the phoM region. J Bacteriol 169(2):900–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welker M (2011) Proteomics for routine identification of microorganisms. Proteomics 11:3143–3153

    Article  CAS  PubMed  Google Scholar 

  • Witchley JN, Penumetcha PM, Noble SM (2019) Visualization of Candida albicans in the murine gastrointestinal tract using fluorescent in situ hybridization. J Vis Exp 153:e60283

    Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chuahan VS, Sugitha TCK, Saxena AK, Dhaliwal HS (2017) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3(1):1–18

    Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74(8):1031–1043

    Article  Google Scholar 

  • Yasoda N, Hirimuthugoda ZC, Longfei WI (2007) Probiotic yeasts with phytase activity identified from the gastrointestinal tract of sea cucumbers. SPC Beche de Mer Information Bulletin 26:1–3

    Google Scholar 

  • Ye RW, Wang T, Bedzyk L, Croker KM (2001) Applications of DNA microarrays in microbial systems. J Microbiol Methods 47:257–272

    Article  CAS  PubMed  Google Scholar 

  • Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SL, Liu YN, Jing GL, Zhao BJ, Guo SY (2005) Analysis of phosphate accumulating organism cultivated under different carbon sources with polymerase reaction denaturing gradient gel electrophoresis assay. J Environ Sci 17:611–614

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suyal, D.C. et al. (2021). Phosphate-Solubilizing Fungi: Current Perspective and Future Need for Agricultural Sustainability. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60659-6_5

Download citation

Publish with us

Policies and ethics