Skip to main content

Spectral Isoperimetric Inequality for the δ′-Interaction on a Contour

  • Conference paper
  • First Online:
Mathematical Challenges of Zero-Range Physics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 42))

Abstract

We consider the problem of geometric optimization for the lowest eigenvalue of the two-dimensional Schrödinger operator with an attractive δ′-interaction of a fixed strength, the support of which is a C 2-smooth contour. Under the constraint of a fixed length of the contour, we prove that the lowest eigenvalue is maximized by the circle. The proof relies on the min-max principle and the method of parallel coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Birkhäuser, Basel (2006)

    Google Scholar 

  2. Henrot, A.: Shape Optimization and Spectral Theory. De Gruyter, Warsaw (2017)

    Book  Google Scholar 

  3. Exner, P., Harrell, E.M., Loss, M.: Inequalities for means of chords, with application to isoperimetric problems. Lett. Math. Phys. 75, 225–233 (2006)

    Article  MathSciNet  Google Scholar 

  4. Behrndt, J., Exner, P., Lotoreichik, V.: Schrödinger operators with δ and δ′-interactions on Lipschitz surfaces and chromatic numbers of associated partitions. Rev. Math. Phys. 26, 1450015 (2014)

    Article  MathSciNet  Google Scholar 

  5. Behrndt, J., Grubb, G., Langer, M., Lotoreichik, V.: Spectral asymptotics for resolvent differences of elliptic operators with δ and δ′-interactions on hypersurfaces. J. Spectr. Theory. 5, 697–729 (2015)

    Article  MathSciNet  Google Scholar 

  6. Behrndt, J., Langer, M., Lotoreichik, V.: Schrödinger operators with δ and δ′-potentials supported on hypersurfaces. Ann. Henri Poincaré 14, 385–423 (2013)

    Article  MathSciNet  Google Scholar 

  7. Exner, P., Jex, M.: Spectral asymptotics of a strong δ′-interaction on a planar loop. J. Phys. A Math. Theor. 46, 345201 (2013)

    Article  MathSciNet  Google Scholar 

  8. Exner, P., Khrabustovskyi, A.: On the spectrum of narrow Neumann waveguide with periodically distributed traps. J. Phys. A Math. Theor. 48, 315301 (2015)

    Article  MathSciNet  Google Scholar 

  9. Exner, P., Khrabustovskyi, A.: Gap control by singular Schrödinger operators in a periodically structured metamaterial. J. Math. Phys. Anal. Geom. 14, 270–285 (2018)

    MATH  Google Scholar 

  10. Jex, M., Lotoreichik, V.: On absence of bound states for weakly attractive δ′-interactions supported on non-closed curves in \(\mathbb {R}^2\). J. Math. Phys. 57, 022101 (2016)

    Google Scholar 

  11. Mantile, A., Posilicano, A., Sini, M.: Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces. J. Differ. Equations 261, 1–55 (2016)

    Article  MathSciNet  Google Scholar 

  12. Figotin, A., Kuchment, P.: Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model. SIAM J. Appl. Math. 56, 68–88 (1996)

    Article  MathSciNet  Google Scholar 

  13. Figotin, A., Kuchment, P.: Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals. SIAM J. Appl. Math. 56, 1561–1620 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Holzmann, M., Ourmières-Bonafos, T., Pankrashkin, K.: Dirac operators with Lorentz scalar shell interactions. Rev. Math. Phys. 30, 1850013 (2018)

    Article  MathSciNet  Google Scholar 

  15. Dal Maso, G., Franzina, G., Zucco, D.: Transmission conditions obtained by homogenisation. Nonlinear Anal. 177, 361–386 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hruslov, E.: On the Neumann boundary value problem in a domain with complicated boundary. Mat. Sb. 12, 553–571 (1970)

    Article  Google Scholar 

  17. Davies, E.B.: ICMS lecture notes on computational spectral theory. Lond. Math. Soc. Lect. Note Ser. 273, 76–94 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Arrizabalaga, N., Mas, A., Vega. L.: An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators. Commun. Math. Phys. 344, 483–505 (2016)

    Google Scholar 

  19. Behrndt, J., Frank, R.L., Kühn, C., Lotoreichik, V., Rohleder, J.: Spectral theory for Schrödinger operators with δ-interactions supported on curves in \({\mathbb R}^3\). Ann. Henri Poincaré 18, 1305–1347 (2017)

    Google Scholar 

  20. Exner, P.: An isoperimetric problem for leaky loops and related mean-chord inequalities. J. Math. Phys. 46, 062105 (2005)

    Article  MathSciNet  Google Scholar 

  21. Exner, P., Lotoreichik, V.: A spectral isoperimetric inequality for cones. Lett. Math. Phys. 107, 717–732 (2017)

    Article  MathSciNet  Google Scholar 

  22. Exner, P., Lotoreichik, V.: Optimization of the lowest eigenvalue for leaky star graphs. In: Bonetto, F., Borthwick, D., Harrell, E., Loss, M. (eds.) Proceedings of the Conference “Mathematical Results in Quantum Physics” (QMath13, Atlanta 2016), pp. 187–196. AMS, Providence (2018)

    MATH  Google Scholar 

  23. Lotoreichik, V.: Spectral isoperimetric inequalities for singular interactions on open arcs. Appl. Anal. 98, 1451–1460 (2019)

    Article  MathSciNet  Google Scholar 

  24. Antunes, P.R.S., Freitas, P., Krejčiřík, D.: Bounds and extremal domains for Robin eigenvalues with negative boundary parameter. Adv. Calc. Var. 10, 357–380 (2017)

    Article  MathSciNet  Google Scholar 

  25. Freitas, P., Krejčiřík, D.: The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280, 322–339 (2015)

    Article  MathSciNet  Google Scholar 

  26. Khalile, M., Lotoreichik, V.: Spectral isoperimetric inequalities for Robin Laplacians on 2-manifolds and unbounded cones. arXiv:1909.10842

    Google Scholar 

  27. Krejčiřík, D., Lotoreichik, V.: Optimisation of the lowest Robin eigenvalue in the exterior of a compact set. J. Convex Anal. 25, 319–337 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Krejčiřík, D., Lotoreichik, V.: Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions. Potential Anal. 52, 601–614 (2020)

    MATH  Google Scholar 

  29. Payne, L.E., Weinberger, H.F.: Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl. 2, 210–216 (1961)

    Article  MathSciNet  Google Scholar 

  30. Faber. G.: Beweis dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitz. bayer. Akad. Wiss. 1923, 169–172 (1923)

    Google Scholar 

  31. Krahn, E.: Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94, 97–100 (1924)

    Article  MathSciNet  Google Scholar 

  32. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  Google Scholar 

  33. Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden. H.: Solvable models in quantum mechanics. In: With an Appendix by Pavel Exner. 2nd edn. AMS Chelsea Publishing, Providence (2005)

    Google Scholar 

  34. Reed. M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, New York (1978)

    Google Scholar 

  35. Exner, P., Lotoreichik, V.: Spectral optimization for Robin Laplacian on domains admitting parallel coordinates. Math. Nachr. (to appear)

    Google Scholar 

  36. Abramowitz, M.S., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1964)

    MATH  Google Scholar 

  37. Hartman, P., Watson, G.: ‘Normal’ distribution functions on spheres and the modified Bessel functions. Ann. Probab. 2, 593–607 (1974)

    Article  MathSciNet  Google Scholar 

  38. Krantz, S., Parks, H.: The Implicit Function Theorem. History, Theory, and Applications. Birkhäuser/Springer, New York (2013)

    Google Scholar 

  39. Savo, A.: Lower bounds for the nodal length of eigenfunctions of the Laplacian. Ann. Glob. Anal. Geom. 16, 133–151 (2001)

    Article  MathSciNet  Google Scholar 

  40. Fiala, F.: Les problèmes des isopérimetres sur les surfaces ouvertes á courbure positive. Comm. Math. Helv. 13, 293–346 (1941)

    Article  Google Scholar 

  41. Hartman, P.: Geodesic parallel coordinates in the large. Am. J. Math. 86, 705–727 (1964)

    Article  MathSciNet  Google Scholar 

  42. Bandle, C.: Isoperimetric inequalities and applications. In: Monographs and Studies in Mathematics. Pitman, New York (1980)

    Google Scholar 

  43. Exner, P., Rohleder, J.: Generalized interactions supported on hypersurfaces. J. Math. Phys. 57, 041507 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is indebted to Pavel Exner, Michal Jex, David Krejčiřík, and Magda Khalile for fruitful discussions and gratefully acknowledges the support by the grant No. 17-01706S of the Czech Science Foundation (GAČR).

The author also thanks Alessandro Michelangeli for the invitation to participate in and give a mini-course at the third workshop: Mathematical Challenges of Zero-Range Physics: rigorous results and open problems and Istituto Nazionale di Alta Matematica “Francesco Severi” for the financial support of the travel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lotoreichik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lotoreichik, V. (2021). Spectral Isoperimetric Inequality for the δ′-Interaction on a Contour. In: Michelangeli, A. (eds) Mathematical Challenges of Zero-Range Physics. Springer INdAM Series, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-60453-0_10

Download citation

Publish with us

Policies and ethics