Skip to main content

Approach to Obstacle Localization for Robot Navigation in Agricultural Territories

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2020)

Abstract

Search and localization of obstacles is one of the main tasks in path planning for robotic systems. In this paper, an approach to obstacle localization for robot navigation in agricultural territories is proposed. The developed approach is based on a combination of calculation of Normalized Difference Vegetation Index (NDVI) and artificial neural network (ANN). The NDVI is used to detect obstacles: buildings, stones, garbage and the Convolutional Neural Network (CNN) is intended to search other obstacles: trees and vegetation. This separation allowed to reduce the amount of data necessary for CNN training to one data class. The result of the presented approach is a binary map, which shows passable and non-passable areas for robots. The total accuracy of obstacle detection using proposed approach ranges from 56 to 90% of the whole area, occupied by obstacles, on image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kostjukov, V.A., Medvedev, M.Y., Pshikhopov, V.K.: Optimization of mobile robot movement on a plane with finite number of repeller sources. SPIIRAS Proc. 19(1), 43ā€“78 (2020). https://doi.org/10.15622/10.15622/sp.2020.19.1.2

    ArticleĀ  Google ScholarĀ 

  2. Lavrenov, R.O., Magid, E.A., Matsuno, F., Svinin, M.M., Suthakorn, J.: Artificial intelligence. Knowledge and data engineering. SPIIRAS Proc. 18(1), 57ā€“84 (2019). https://doi.org/10.15622/sp.18.1.57-84

    ArticleĀ  Google ScholarĀ 

  3. Tchernykh, V., Beck, M., Janschek, K.: Optical flow navigation for an outdoor UAV using a wide angle mono camera and DEM matching. IFAC Proc. Vol. 39(16), 590ā€“595 (2006)

    ArticleĀ  Google ScholarĀ 

  4. Ross, M.: NDVI vegetation analysis using UAV imagery. Bachelorā€™s thesis in Mathematical Information Technology (2019)

    Google ScholarĀ 

  5. Modi, A.K., Das, P.: Multispectral imaging camera sensing to evaluate vegetation index from UAV. Methodology 16(29), 12 (2019)

    Google ScholarĀ 

  6. Xu, R., Li, C., Paterson, A.H.: Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLoS ONE 14(2), e0205083 (2019)

    ArticleĀ  Google ScholarĀ 

  7. Murcko, J.: Object-based classification for estimation of built-up density within urban environment. Environmental Sciences, Technische UniversitƤt Dresden (2017). http://cartographymaster.eu/wp-content/theses/2017_Murcko_Thesis.pdf

  8. Steven, M.D., et al.: Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ. 88(4), 412ā€“422 (2003)

    ArticleĀ  Google ScholarĀ 

  9. Zhang, L., Zhang, L., Du, B.: Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 4(2), 22ā€“40 (2016)

    ArticleĀ  Google ScholarĀ 

  10. Miranda, E., Mutiara, A.B., Ernastuti, W.C.W.: Forest classification method based on convolutional neural networks and Sentinel-2 satellite imagery. Int. J. Fuzzy Logic Intell. Syst. 19(4), 272ā€“282 (2019)

    ArticleĀ  Google ScholarĀ 

  11. Fan, Z., Lu, J., Gong, M., Xie, H., Goodman, E.D.: Automatic tobacco plant detection in UAV images via deep neural networks. IEEE J. Sel. Top. Appl. Earth Observat. Remote Sens. 11(3), 876ā€“887 (2018)

    ArticleĀ  Google ScholarĀ 

  12. Rebetez, J., et al.: Augmenting a convolutional neural network with local histograms-a case study in crop classification from high-resolution UAV imagery. In: ESANN, April 2016

    Google ScholarĀ 

  13. Genik, W.: Case Study: wild Oat control efficiency using UAV imagery ā€“ Green Aero Tech (2015). https://www.greenaerotech.com/case-study-wild-oatcontrol-efficiency-using-uav-imagery. accessed 15 May 2020

  14. He, K., Gkioxari, G., DollĆ”r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961ā€“2969 (2017)

    Google ScholarĀ 

  15. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740ā€“755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    ChapterĀ  Google ScholarĀ 

  16. Zhao, K., Kang, J., Jung, J., Sohn, G.: Building extraction from satellite images using mask R-CNN with building boundary regularization. In: CVPR Workshops, pp. 247ā€“251 (2018)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor Šksamentov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šksamentov, E., Astapova, M., Usina, E. (2020). Approach to Obstacle Localization for Robot Navigation in Agricultural Territories. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2020. Lecture Notes in Computer Science(), vol 12336. Springer, Cham. https://doi.org/10.1007/978-3-030-60337-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60337-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60336-6

  • Online ISBN: 978-3-030-60337-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics