Skip to main content

A Two-Dimensional Lattice with Non-dense Packing of Particles

  • Chapter
  • First Online:
Structural Modeling of Metamaterials

Abstract

In this chapter, we consider a model of a granular medium as a rectangular lattice of rigid ellipse-shaped particles. Each particle of such a lattice possesses two translational and one rotational degrees of freedom. The space between the particles is a massless medium through which the force and coupled interactions are transmitted. In limiting cases, this model degenerates either into a chain of ellipse-shaped particles or into a square lattice of round particles. The main objectives of this chapter are to derive dynamic equations of a granular medium consisting of anisotropic particles and to identify the relationships between the physicomechanical properties of a granular material and the parameters of its microstructure. Using the results obtained in the chapter, it is possible to determine the elastic properties of an anisotropic nanocrystalline (granular) material with non-dense packing of particles by measuring the velocities of elastic waves propagating along different crystallographic directions [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Magnon is a quasiparticle corresponding to a quantum of spin waves in magnetically ordered systems [20]. Magnon plays the same role with respect to spin vibrations as phonon plays with respect to crystal lattice vibrations.

References

  1. Fedorov, V.I.: Theory of Elastic Waves in Crystals. Nauka, Moscow, 1965; Plenum Press, New York, 1968

    Google Scholar 

  2. Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010)

    Article  CAS  Google Scholar 

  3. Pavlov, I.S., Potapov, A.I.: Two-dimensional model of a granular medium. Mech. Solids 42(2), 250–259 (2007)

    Article  Google Scholar 

  4. Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. J. Solids Struct. 43(20), 6194–6207 (2006)

    Article  Google Scholar 

  5. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322(3), 564–580 (2009)

    Article  Google Scholar 

  6. Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vibr. 384, 163–176 (2016)

    Article  Google Scholar 

  7. Nowacki, W.: Theory of Micropolar Elasticity. Springer, Wien (1970)

    Book  Google Scholar 

  8. Lisina, S.A., Potapov, A.I., Nesterenko, V.F.: Nonlinear granular medium with rotations of the particles. One-dimensional model. Phys. Acoust. 47(5), 666–674 (2001)

    Article  Google Scholar 

  9. Dragunov, T.N., Pavlov, I.S., Potapov, A.I.: Anharmonic interaction of elastic and orientation waves in one-dimensional crystals. Phys. Solid State. 39, 118–124 (1997)

    Google Scholar 

  10. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of Nanocrystalline Media by Acoustic Spectroscopy Methods. Acoust. Phys. 56(4), 588–596 (2010)

    Article  CAS  Google Scholar 

  11. Gauthier, R.D.: Experimental investigations on micropolar media. Mechanics of Micropolar Media, pp. 395–463. World Scientific, Singapore (1982)

    Google Scholar 

  12. Gauthier, R.D., Jashman W.E.: A quest for micropolar constants. Arch. Mech. 33(N5), 717–737 (1981)

    Google Scholar 

  13. Erofeyev, V.I., Rodyushkin, V.M.: Observation of the dispersion of elastic waves in a granular composite and a mathematical model for its description. Sov. Phys. Acoust. 38(6), 611–612 (1992)

    Google Scholar 

  14. Potapov, A.I., Rodyushkin, V.M.: Experimental investigation of strain waves in materials with microstructure. Acoust. Phys. 47(1), 347–352 (2001)

    Article  Google Scholar 

  15. Vakhnenko, V.A.: Diagnosis of the properties of a structurized medium by long nonlinear waves. J. Appl. Mech. Tech. Phys. 37(5), 643–649 (1996)

    Article  Google Scholar 

  16. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley (2005)

    Google Scholar 

  17. Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: analysis of body waves and eigenmodes. J. Sound Vibr. 240(N1), 1–18 (2001)

    Google Scholar 

  18. Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P.: Theory of Waves. Nauka, Moscow (1990). (in Russian)

    Google Scholar 

  19. Prokhorov, A.M.: Inelastic scattering of neutrons. Magnetic inelastic scattering. In: The physical encyclopedia in 5 volumes, vol. 3, p. 345. The Big Russian encyclopedia, Moscow (1992). (in Russian)

    Google Scholar 

  20. Kaganov M.I. Electrons, Phonons, Magnons, 268 pp. English Translation. Mir Publishers, Moscow (1981)

    Google Scholar 

  21. Barnett, S.J.: Gyromagnetic and electron-inertia effects. Rev. Mod. Phys. 7, 129–166 (1935)

    Article  CAS  Google Scholar 

  22. Vonsovsky, S.V.: Magnetism. Wiley, New York (1974)

    Google Scholar 

  23. Akhiezer, A.I., Bar’yakhtar, V.G., Vlasov, K.B., Peletminskii, S.V.: Rotational invariance, coupled magnetoelastic waves, and magnetoacoustic resonance. Sov. Phys. Usp. 27, 641–642 (1984)

    Google Scholar 

  24. Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North Holland, Amsterdam (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Erofeev .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erofeev, V.I., Pavlov, I.S. (2021). A Two-Dimensional Lattice with Non-dense Packing of Particles. In: Structural Modeling of Metamaterials. Advanced Structured Materials, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-60330-4_3

Download citation

Publish with us

Policies and ethics