Skip to main content

MitoEM Dataset: Large-Scale 3D Mitochondria Instance Segmentation from EM Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Electron microscopy (EM) allows the identification of intracellular organelles such as mitochondria, providing insights for clinical and scientific studies. However, public mitochondria segmentation datasets only contain hundreds of instances with simple shapes. It is unclear if existing methods achieving human-level accuracy on these small datasets are robust in practice. To this end, we introduce the MitoEM dataset, a 3D mitochondria instance segmentation dataset with two (30 \(\upmu \)m)\(^3\) volumes from human and rat cortices respectively, 3,600\(\times \) larger than previous benchmarks. With around 40K instances, we find a great diversity of mitochondria in terms of shape and density. For evaluation, we tailor the implementation of the average precision (AP) metric for 3D data with a 45\(\times \) speedup. On MitoEM, we find existing instance segmentation methods often fail to correctly segment mitochondria with complex shapes or close contacts with other instances. Thus, our MitoEM dataset poses new challenges to the field. We release our code and data: https://donglaiw.github.io/page/mitoEM/index.html.

N. Wendt, X. Liu, W. Yin, X. Huang, and A. Gupta—Works are done during internship at Harvard University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ariadne.ai: Automated segmentation of mitochondria and ER in cortical cells (2018). https://ariadne.ai/case/segmentation/organelles/CorticalCells/. Accessed 7 July 2020

  2. Beier, T., et al.: Multicut brings automated neurite segmentation closer to human performance. Nat. Meth. 14(2), 101–102 (2017)

    Article  Google Scholar 

  3. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: CVPR, pp. 2487–2496. IEEE (2016)

    Google Scholar 

  4. Cheng, H.C., Varshney, A.: Volume segmentation using convolutional neural networks with limited training data. In: ICIP, pp. 590–594. IEEE (2017)

    Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: NeurIPS, pp. 2843–2851 (2012)

    Google Scholar 

  7. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. TPAMI 31, 1362–1374 (2008)

    Article  Google Scholar 

  8. Dorkenwald, S.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Meth. 14(4), 435–442 (2017)

    Article  Google Scholar 

  9. Funke, J.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. TPAMI 41(7), 1669–1680 (2018)

    Article  Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969. IEEE (2017)

    Google Scholar 

  11. Jain, V., Turaga, S.C., Briggman, K., Helmstaedter, M.N., Denk, W., Seung, H.S.: Learning to agglomerate superpixel hierarchies. In: NeurIPS, pp. 648–656 (2011)

    Google Scholar 

  12. Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Meth. 15(8), 605–610 (2018)

    Article  Google Scholar 

  13. Kasahara, T., et al.: Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol. Psychiatry 21(1), 39–48 (2016)

    Article  Google Scholar 

  14. Krasowski, N., Beier, T., Knott, G., Köthe, U., Hamprecht, F.A., Kreshuk, A.: Neuron segmentation with high-level biological priors. TMI 37(4), 829–839 (2017)

    Google Scholar 

  15. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv:1706.00120 (2017)

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Liu, J., Li, W., Xiao, C., Hong, B., Xie, Q., Han, H.: Automatic detection and segmentation of mitochondria from SEM images using deep neural network. In: EMBC. IEEE (2018)

    Google Scholar 

  18. Lucchi, A., Li, Y., Smith, K., Fua, P.: Structured image segmentation using kernelized features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 400–413. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_29

    Chapter  Google Scholar 

  19. Lucchi, A.: Learning structured models for segmentation of 2-D and 3-D imagery. TMI 34(5), 1096–1110 (2014)

    Google Scholar 

  20. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. TMI 31(2), 474–486 (2011)

    Google Scholar 

  21. Meirovitch, Y., Mi, L., Saribekyan, H., Matveev, A., Rolnick, D., Shavit, N.: Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics. In: CVPR. IEEE (2019)

    Google Scholar 

  22. Motta, A., et al.: Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366(6469), eaay3134 (2019)

    Article  Google Scholar 

  23. Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2D and 3D images. PLoS ONE 8, e71715 (2013)

    Article  Google Scholar 

  24. Oztel, I., Yolcu, G., Ersoy, I., White, T., Bunyak, F.: Mitochondria segmentation in electron microscopy volumes using deep convolutional neural network. In: IEEE International Conference on Bioinformatics and Biomedicine (2017)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  26. Schubert, P.J., Dorkenwald, S., Januszewski, M., Jain, V., Kornfeld, J.: Learning cellular morphology with neural networks. Nat. Commun. 10, 2736 (2019)

    Article  Google Scholar 

  27. Smith, K., Carleton, A., Lepetit, V.: Fast ray features for learning irregular shapes. In: ICCV. IEEE (2009)

    Google Scholar 

  28. Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Maximin affinity learning of image segmentation. In: NeurIPS, pp. 1865–1873 (2009)

    Google Scholar 

  29. Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., Pfister, H.: Segmentation fusion for connectomics. In: ICCV. IEEE (2011)

    Google Scholar 

  30. Xiao, C.: Automatic mitochondria segmentation for EM data using a 3D supervised convolutional network. Front. Neuroanat. 12, 92 (2018)

    Article  Google Scholar 

  31. Xu, N., et al.: YouTube-VOS: a large-scale video object segmentation benchmark. In: ECCV. Springer, Heidelberg (2018)

    Google Scholar 

  32. Xu, Y.: Gland instance segmentation using deep multichannel neural networks. Trans. Biomed. Eng. 64(12), 2901–2912 (2017)

    Article  Google Scholar 

  33. Yan, Z., Yang, X., Cheng, K.-T.T.: A deep model with shape-preserving loss for gland instance segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 138–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_16

    Chapter  Google Scholar 

  34. Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017)

    Article  Google Scholar 

  35. Zeviani, M., Di Donato, S.: Mitochondrial disorders. Brain 127(10), 2153–2172 (2004)

    Article  Google Scholar 

  36. Zhang, L., et al.: Altered brain energetics induces mitochondrial fission arrest in Alzheimers disease. Sci. Rep. 6, 18725 (2016)

    Article  Google Scholar 

  37. Zlateski, A., Seung, H.S.: Image segmentation by size-dependent single linkage clustering of a watershed basin graph. arXiv:1505.00249 (2015)

Download references

Acknowledgments

This work has been partially supported by NSF award IIS-1835231 and NIH award 5U54CA225088-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglai Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, D. et al. (2020). MitoEM Dataset: Large-Scale 3D Mitochondria Instance Segmentation from EM Images. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics