Skip to main content

Generalizing Spatial Transformers to Projective Geometry with Applications to 2D/3D Registration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Differentiable rendering is a technique to connect 3D scenes with corresponding 2D images. Since it is differentiable, processes during image formation can be learned. Previous approaches to differentiable rendering focus on mesh-based representations of 3D scenes, which is inappropriate for medical applications where volumetric, voxelized models are used to represent anatomy. We propose a novel Projective Spatial Transformer module that generalizes spatial transformers to projective geometry, thus enabling differentiable volume rendering. We demonstrate the usefulness of this architecture on the example of 2D/3D registration between radiographs and CT scans. Specifically, we show that our transformer enables end-to-end learning of an image processing and projection model that approximates an image similarity function that is convex with respect to the pose parameters, and can thus be optimized effectively using conventional gradient descent. To the best of our knowledge, we are the first to describe the spatial transformers in the context of projective transmission imaging, including rendering and pose estimation. We hope that our developments will benefit related 3D research applications. The source code is available at https://github.com/gaocong13/Projective-Spatial-Transformers.

Supported by NIH R01EB023939, NIH R21EB020113, NIH R21EB028505 and Johns Hopkins University Applied Physics Laboratory internal funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is worth mentioning that this problem can be circumvented via ray casting-based implementations if one is interested in but not in   [25].

References

  1. Ferrante, E., Oktay, O., Glocker, B., Milone, D.H.: On the adaptability of unsupervised CNN-based deformable image registration to unseen image domains. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 294–302. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_34

    Chapter  Google Scholar 

  2. Gibson, E., et al.: Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging 37(8), 1822–1834 (2018)

    Article  Google Scholar 

  3. Grupp, R., et al.: Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration. arXiv preprint arXiv:1911.07042 (2019)

  4. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  5. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  6. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Mach. Vis. Appl. 1–18 (2020). https://doi.org/10.1007/s00138-020-01060-x

  7. Henderson, P., Ferrari, V.: Learning single-image 3D reconstruction by generative modelling of shape, pose and shading. Int. J. Comput. Vis. 128, 835–854 (2020). https://doi.org/10.1007/s11263-019-01219-8

    Article  Google Scholar 

  8. Hou, B., et al.: Predicting slice-to-volume transformation in presence of arbitrary subject motion. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 296–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_34

    Chapter  Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  10. Krčah, M., Székely, G., Blanc, R.: Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. In: 2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro, pp. 2087–2090. IEEE (2011)

    Google Scholar 

  11. Krebs, J., et al.: Robust non-rigid registration through agent-based action learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 344–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_40

    Chapter  Google Scholar 

  12. Kuang, D., Schmah, T.: FAIM – a ConvNet method for unsupervised 3D medical image registration. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 646–654. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_74

    Chapter  Google Scholar 

  13. Liao, R., et al.: An artificial agent for robust image registration. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  14. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7708–7717 (2019)

    Google Scholar 

  15. Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_11

    Chapter  Google Scholar 

  16. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  17. Mahendran, S., Ali, H., Vidal, R.: 3D pose regression using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2174–2182 (2017)

    Google Scholar 

  18. Miao, S., et al.: Dilated FCN for multi-agent 2D/3D medical image registration. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  19. Miao, S., Wang, Z.J., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016)

    Article  Google Scholar 

  20. Miolane, N., Mathe, J., Donnat, C., Jorda, M., Pennec, X.: Geomstats: a python package for riemannian geometry in machine learning. arXiv preprint arXiv:1805.08308 (2018)

  21. Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L., et al.: A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans. Med. Imaging 17(4), 586–595 (1998)

    Article  Google Scholar 

  22. Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_65

    Chapter  Google Scholar 

  23. Salehi, S.S.M., Khan, S., Erdogmus, D., Gholipour, A.: Real-time deep registration with geodesic loss. arXiv preprint arXiv:1803.05982 (2018)

  24. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)

    Google Scholar 

  25. Würfl, T., et al.: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans. Med. Imaging 37(6), 1454–1463 (2018)

    Article  Google Scholar 

  26. Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: learning single-view 3D object reconstruction without 3D supervision. In: Advances in Neural Information Processing Systems, pp. 1696–1704 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, C. et al. (2020). Generalizing Spatial Transformers to Projective Geometry with Applications to 2D/3D Registration. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics