Skip to main content

Numerical Enhancements and Parallel GPU Implementation of a 3D Gaussian Beam Model

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Despite the increasing performance of modern processors it is well known that the majority of models that account for 3D underwater acoustic predictions still require a high computational cost. In this context, this work presents strategies to enhance the computational performance of a ray-based 3D model. First, it is presented an optimized method for acoustic field calculations, that accounts for a large number of sensors. Second, the inherent parallelism of ray tracing and the high workload of 3D propagation are carefully considered, leading to the development of parallel algorithms for field predictions using a GPU architecture. The strategies were validated through performance analyses and comparisons with experimental data from a tank scale experiment, and the results show that model predictions are computationally efficient and accurate. The combination of numerical enhancements and parallel computing allowed to speedup model calculations for a large number of receivers.

Supported by Institute of Sea Studies Admiral Paulo Moreira, Brazilian Navy. Thanks are due to the SiPLAB research team, LARSyS, FCT, University of Algarve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, O.G.: Three-dimensional wave equation computations on vector computers. Proc. IEEE 72, 90–95 (1984)

    Article  Google Scholar 

  2. Tolstoy, A.: 3-D propagation issues and models. J. Comput. Acoust. 4(03), 243–271 (1996)

    Article  Google Scholar 

  3. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: Computational Ocean Acoustics, 2nd edn. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8678-8

    Book  MATH  Google Scholar 

  4. Jenserud, T., Ivansson, S.: Measurements and modeling of effects of out-of-plane reverberation on the power delay profile for underwater acoustic channels. IEEE J. Oceanic Eng. 40(4), 807–821 (2015)

    Article  Google Scholar 

  5. Sturm, F., Korakas, A.: Comparisons of laboratory scale measurements of three-dimensional acoustic propagation with solutions by a parabolic equation model. J. Acoust. Soc. Am. 133(1), 108–118 (2013)

    Article  Google Scholar 

  6. Etter, P.C.: Underwater Acoustic Modeling and Simulation, 4th edn. CRC Press, Boca Raton (2013)

    Google Scholar 

  7. Reilly, S.M., Potty, G.R., Goodrich, M.: Computing acoustic transmission loss using 3D Gaussian ray bundles in geodetic coordinates. J. Comput. Acoust. 24(01), 16500071–165000724 (2016)

    Article  MathSciNet  Google Scholar 

  8. Soares, C., Zabel, F., Jesus, S.M.: A shipping noise prediction tool. In: OCEANS 2015-Genova, pp. 1–7. IEEE (2015)

    Google Scholar 

  9. Calazan, R.M., Rodríguez, O.C.: TRACEO3D ray tracing model for underwater noise predictions. In: Camarinha-Matos, L.M., Parreira-Rocha, M., Ramezani, J. (eds.) DoCEIS 2017. IAICT, vol. 499, pp. 183–190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56077-9_17

    Chapter  Google Scholar 

  10. Kirk, D.B., Wen-Mei, W.H.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan kaufmann, Burlington (2013)

    Google Scholar 

  11. Hursky, P., Porter, M.B.: Accelerating underwater acoustic propagation modeling using general purpose graphic processing units. In: OCEANS 2011, pp. 1–6. IEEE (2011)

    Google Scholar 

  12. Sun, X., Da, L., Li, Y.: Study of BDRM asynchronous parallel computing model based on multiple cuda streams. In: 2014 Seventh International Symposium on Computational Intelligence and Design (ISCID), vol. 1, pp. 181–184. IEEE (2014)

    Google Scholar 

  13. Ey, E.: Adaptation of an acoustic propagation model to the parallel architecture of a graphics processor. Master’s thesis, University of Algarve (2013)

    Google Scholar 

  14. Calazan, R.M., Rodríguez, O.C., Nedjah, N.: Parallel ray tracing for underwater acoustic predictions. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10404, pp. 43–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62392-4_4

    Chapter  Google Scholar 

  15. Open source high performance computing. https://www.open-mpi.org/. Accessed 13 June 2018

  16. Ocean acoustics library. http://oalib.hlsresearch.com/. Accessed 03 July 2018

  17. Rodriguez, O.C., Sturm, F., Petrov, P., Porter, M.: Three-dimensional model benchmarking for cross-slope wedge propagation. In: Proceedings of Meetings on Acoustics, Boston, MA, 25–29 June 2017, vol. 30, p. 070004. ASA (2017)

    Google Scholar 

  18. Calazan, R., Rodríguez, O.C.: Simplex based three-dimensional eigenray search for underwater predictions. J. Acoust. Soc. Am. 143(4), 2059–2065 (2018)

    Article  Google Scholar 

  19. Rodriguez, O.C., Collis, J.M., Simpson, H.J., Ey, E., Schneiderwind, J., Felisberto, P.: Seismo-acoustic ray model benchmarking against experimental tank data. J. Acoust. Soc. Am. 132(2), 709–717 (2012)

    Article  Google Scholar 

  20. Červenỳ, V., Pšenčík, I.: Ray amplitudes of seismic body waves in laterally inhomogeneous media. Geophys. J. Int. 57(1), 91–106 (1979)

    Article  Google Scholar 

  21. Popov, M.M.: Ray theory and Gaussian beam method for geophysicists. EDUFBA, Salvador, Bahia (2002)

    Google Scholar 

  22. Porter, M.B.: BELLHOP3D user guide. Techical report, Heat, Light, and Sound Research Inc. (2016)

    Google Scholar 

  23. CUDA C programming guide. Technical Report, Nvidia Corporation (2018). https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. Accessed 16 May 2018

  24. The GNU FORTRAN compiler. https://gcc.gnu.org/onlinedocs/gfortran/Interoperability-with-C.html. Accessed 05 June 2018

  25. Korakas, A., Sturm, F., Sessarego, J.-P., Ferrand, D.: Scaled model experiment of long-range across-slope pulse propagation in a penetrable wedge. J. Acoust. Soc. Am. 126(1), EL22–EL27 (2009)

    Article  Google Scholar 

  26. Floating point and IEEE 754 compliance for NVIDIA GPUs. Technical Report, Nvidia Corporation (2018). https://docs.nvidia.com/cuda/floating-point/index.html. Accessed 31 May 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério M. Calazan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calazan, R.M., Rodríguez, O.C., Jesus, S.M. (2020). Numerical Enhancements and Parallel GPU Implementation of a 3D Gaussian Beam Model. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics